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Bringing together emerging lessons from biophysical and social sciences as well as newly available data,
we take stock of what can be learned about the relationship among subjective (reported) and objective
(measured) soil fertility and farmer input use in east Africa. We identify the correlates of Kenyan and
Tanzanian maize farmers’ reported perceptions of soil fertility and assess the extent to which these sub-
jective assessments reflect measured soil chemistry. Our results offer evidence that farmers base their
perceptions of soil quality and soil type on crop yields. We also find that, in Kenya, farmers’ reported soil
type is a reasonable predictor of several objective soil fertility indicators while farmer-reported soil qual-
ity is not. In addition, in exploring the extent to which publicly available soil data are adequate to capture
local soil chemistry realities, we find that the time-consuming exercise of collecting detailed objective
measures of soil content is justified when biophysical analysis is warranted, because farmers’ perceptions
are not sufficiently strong proxies of these measures to be a reliable substitute and because currently
available high-resolution geo-spatial data do not sufficiently capture local variation. In the estimation
of agricultural production or profit functions, where the focus is on averages and in areas with low vari-
ability in soil properties, the addition of soil information does not considerably change the estimation
results. However, having objective (measured) plot-level soil information improves the overall fit of
the model and the estimation of marginal physical products of inputs. Our findings are of interest to
researchers who design, field, or use data from agricultural surveys, as well as policy makers who design
and implement agricultural interventions and policies.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

While many socio-economic factors contribute to poor crop
yields across Sub-Saharan Africa (SSA), a major biophysical con-
tributor is the depletion of soil fertility (Sanchez, 2002; Sanchez
& Swaminathan, 2005; Tully, Sullivan, Weil, & Sanchez, 2015;
Vanlauwe, Six, Sanginga, & Adesina, 2015). Across different agro-
ecological zones in SSA, soils poor in nutrients and soil organic
matter not only partially account for low yields but also limit the
effectiveness of other inputs such as fertilizer and labor, and
reduce farm households’ resilience to external stressors and shocks
(e.g., pests, crop diseases, climate change). Moreover, the direct
links between soil fertility, agricultural productivity, food insecu-
rity, and rural poverty can be self-reinforcing. Whether due to poor
initial soil endowments or resource constraints that lead to low
input use (fertilizers and/or organic soil amendments), the broad
pattern across much of SSA is soil degradation over time
(Güereña, Kimetu, Riha, Neufeldt, & Lehmann, 2016; Tittonell,
Vanlauwe, Leffelaar, Rowe, and Giller, 2005). As a result, some
farmers find themselves trapped in low productivity equilibria
(Antle, Stoorvogel, & Valdivia, 2006; Barrett & Bevis, 2015;
Shepherd & Soule, 1998; Stephens et al., 2012).

Despite the importance of soil fertility in the context of agricul-
tural development, major barriers remain in our understanding of
how farmers form perceptions about their soil fertility, and how
soil fertility—subjective (reported) and objective (measured)—is
related to farmers’ management practices in terms of input use.
Together with farmer ability, soil fertility is often unobserved by
ons for
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1 The term ‘‘soil quality” was used in the household surveys in Tanzania and Kenya
and refers to general farmer perceptions of soil fertility. The term ‘‘soil fertility” is
used throughout this paper to either represent the specific soil chemical and physical
fertility tests measured or as a general term to describe the relationship between soil
attributes and crop production.
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the researchers (and delegated to the error term of the economet-
ric models). Yet both natural endowments like soil and farmer
managerial abilities are highly heterogeneous and have been
shown to explain the low adoption rates of agricultural inputs
(Suri (2011), for example, demonstrates that heterogeneity in net
returns explains the adoption patterns of hybrid maize seeds in
Kenya). Without having access to detailed and reliable soil infor-
mation it is impossible to assess the contribution of heterogeneous
soil fertility to agricultural production, both in terms of crop yields
and farmer management decisions.

A confounding factor in this relationship stems from the fact
that heterogeneity in soil fertility occurs both at high and low spa-
tial scales (Hengl et al., 2015; Tittonell, Vanlauwe, Leffelaar,
Shepherd, & Giller, 2005). More is known about the heterogeneity
at larger (e.g., provincial and up) scales where the sources of
heterogeneity include underlying geological material, agro-
ecological zone, and biome (e.g., rainforest, savannah, desert).
Modern geospatial tools coupled with historic surveys have pro-
vided this information. What is less known is how this heterogene-
ity changes at increased spatial resolutions as the influence of
human management decisions alters the underlying biophysical
soil conditions. These include land-use change (e.g., clearing of for-
ests for agriculture) (Recha et al., 2013), historic cropping patterns
and input use (Chivenge, Vanlauwe, & Six, 2011), cropping inten-
sity (Güereña et al., 2016), and nutrient cycling (Vitousek et al.,
2009). When integrated together, all of these things have unknown
effects on the various soil parameters that constitute soil quality
and fertility.

A paucity of research directly examines the relationship
between soil fertility and existing farm management practices,
especially in SSA. Agronomic studies that have precise measures
of soil fertility and yields often ignore farmers’ behavioral
responses (see, for example, Chivenge et al. (2011)), while eco-
nomic studies fail to account for soil fertility in estimation of agri-
cultural profits and farmer welfare, at best including indicator
proxy variables for soil fertility (e.g., Duflo, Kremer, and Robinson
(2008), Sheahan, Black, and Jayne (2013)). Only a few studies with
access to precise measures of soil fertility analyze farmers’ knowl-
edge of land quality and within-farm variability in resource alloca-
tion and yields (e.g., Tittonell, Vanlauwe, Leffelaar, Rowe, et al.
(2005)). Therefore, in this paper, we attempt to bring together
emerging lessons from the biophysical and social sciences as well
as newly available data to take stock of what we can learn about
the relationships among subjective (farmer-reported) and objec-
tive (researcher-measured or estimated) soil fertility and farmers’
management practices.

Several other studies have examined these relationships, with
mixed results. Cross-sectional data from the World Bank’s Living
Standards Measurement Study-Integrated Survey in Agriculture
(LSMS-ISA) across six different countries, for example, suggest that
farmers in SSA do not significantly vary input application rates
according to perceived soil quality (Sheahan & Barrett, 2017). At
the same time, evidence from Kenya indicates that farmers apply
fewer external inputs on soils with objectively verified low soil car-
bon content (Marenya & Barrett, 2009a), and adjust planting tim-
ing and weeding intensity on plots with different land quality
(Tittonell, Vanlauwe, Leffelaar, Shepherd, et al., 2005).

In order to better understand these empirical observations, we
identify the input and output correlates of farmers’ perceptions
of soil fertility, and assess whether farmers’ perceptions correlate
with objective laboratory measurements of soil fertility character-
istics. We also explore the extent to which publicly available geo-
spatial soil data, estimated via sophisticated interpolation methods
from point observations across the African continent, are adequate
to capture local soil chemistry realities at the household, village,
and data set levels. Such data sets are an incredible resource and
Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
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their availability may obviate the need for detailed on the ground
soil data collection, saving researchers, agricultural organizations,
and governments both time and money. This exercise allows us
to make recommendations to the broader research community
about the relative trade-offs inherent in relying on one soil metric
over another. Finally, we assess the role of soil information from a
research standpoint by interchanging various soil metrics in a pro-
duction function approach to the analysis of yields.

In particular, we address the following four research questions:

1. What can we learn from household survey data about the deter-
minants of farmers’ soil fertility perceptions? Do agricultural
inputs and outputs vary with perceived soil quality and soil
type?

2. To what extent do farmers’ subjective perceptions of soil quality
and type correlate with objective laboratory measurements of
soil chemical fertility? In addition, can we identify any observ-
able plot or household level characteristics that are correlated
with farmers’ soil quality perceptions?

3. Can new high-resolution and publicly available geo-spatial soil
fertility data sets provide insight into the levels and variation of
local (household, village, and data set level) soil fertility such as
would obviate the expensive and time-consuming collection of
detailed plot-level data?

4. What is the role of soil (mis)information in farmers’ and
researchers’ estimation of yields and returns to fertilizer?

To answer these questions, we rely on three data sets that cor-
respond with a small number of maize farming households in
western Kenya and two data sets that correspond with a nationally
representative sample of maize farmers in Tanzania. In both study
regions, farmers’ perceptions of soil quality1 and their agricultural
practices are drawn from household survey responses. Global posi-
tioning system (GPS) coordinates allow us to match these house-
holds with publicly available geo-referenced soil data at 250-meter
spatial resolution from the Africa Soil Information Service (AfSIS)
(Hengl et al., 2015). In western Kenya, additional laboratory mea-
sures of plot-level soil fertility are obtained from soil analyses based
on the resource- and time-intensive collection of soil samples
(Berazneva, Lee, Place, & Jakubson, 2017). Apart from geographic dif-
ferences, both the Kenya and Tanzania data sets also offer different
contexts in terms of data collection efforts: the Kenya data are from
a small-scale detailed survey, while the Tanzania data are from a
nationally representative large-scale project. Combining the two
geographic locations allows us to compare across the contexts, pro-
vide limited external validity to our findings, and offer recommenda-
tions to researchers on soil data collection and use.

Our contributions are twofold. First, we evaluate three potential
sources of soil information: farmer-reported perceptions, plot-
level measurements, and geo-referenced soil data. Second, we pro-
vide some initial evidence as to whether the variation in inputs and
crop yields can be explained by soil information. Our results offer
evidence of correlation between farmer perceptions of soil quality
and soil type with crop yields but no clear correlation with inputs.
We also find that, in Kenya, farmer-reported soil type (soil texture)
is a reasonable predictor of several objective soil fertility indicators
drawn from plot-level measurements while farmer-reported soil
quality is not. In addition, we find that the differences between
the two objective soil data sets that we compare in Kenya—plot-
level measured soil analysis data and geo-spatial AfSIS soil
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009
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data—are considerable, indicating that the time-consuming exer-
cise of collecting detailed objective measures of soil content is jus-
tified when the farmer or researcher is in need of local biophysical
data, despite the growing availability of high-resolution geo-
referenced soil data sets. In the estimation of agricultural produc-
tion, cost, or profit functions, where the focus is on averages and in
areas with low variability in the soil properties, the addition of dif-
ferent types of soil information does not considerably change the
estimation results. However, having objective (measured) plot-
level soil information improves the overall fit of the model and
the estimation of marginal physical products of inputs. Our find-
ings are of interest to researchers who design, field, or use data
from agricultural surveys, as well as policy makers who design
and implement agricultural interventions and policies.

Our paper proceeds as follows. In the next section, we briefly
discuss the context from which our research questions arise. We
then discuss our data sources and methods. The following section
offers results for each of the four questions under investigation.
The last section summarizes these findings and concludes, taking
stock of what we have learned about the relationships among
and role of various sources of soil information, and offering addi-
tional research directions worth pursuing, both for better compre-
hension of farmer behavior and for the collection of better data.
2 A review of rural development literature, as well as studies in ethnopedology that
focus on how farmers understand their soils based on collective experiences, can be
found in Marenya, Barrett, and Gulick (2008).

3 Available at www.isric.org/data/afsoilgrids250m3.
4 Available at www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/har-

monized-world-soil-database-v12/en/.
2. Soil information and its uses

The international development community has recently begun
to turn its attention towards the role of soils in agricultural and
human development; in fact, the Food and Agriculture Organiza-
tion of the United Nations declared 2015 the International Year
of Soils. Aware that soils are important, development and agricul-
tural economists are increasingly including soil data in their
analyses.

When it comes to using soil data, economists generally fall into
three camps. The first takes farmers’ subjective assessments of soil
fertility as a sufficient measure of or proxy for soil fertility without
any verification exercise or follow-up discussion about how farm-
ers make these determinations (see, for example, Sherlund, Barrett,
and Adesina (2002)). Most agricultural household surveys collect
subjective information—farmers report their yields, input use, as
well as environmental conditions. And apart from several excep-
tions (see, for example, Komba and Muchapondwa (2015) who
compare farmers’ perceptions of decadal precipitation and temper-
ature mean and variance to the data from the Tanzanian Meteoro-
logical Agency), most studies do not verify reported data. The
second camp assumes that farmers are too information-
constrained to accurately report soil fertility measures and
therefore relies on highly aggregated or estimated measures of soil
quality or soil type, derived from external mapping exercises and
often matched using administrative boundaries (e.g., Sheahan
et al. (2013)). The third camp makes the same assumptions as
the second but collects and analyzes soil samples from the actual
plots or farms under study in lieu of relying on highly aggregated
or predicted external data sets (e.g., Marenya and Barrett
(2009a)). The costs of data collection efforts that follow from each
of these assumptions differ dramatically. Each campmakes reason-
able assumptions under the reality of data constraints, but little
research attempts to empirically understand the uniqueness of
the information embodied in each of these types of soil data. This
information is valuable when choosing the most accurate soil fer-
tility metrics for analysis and in understanding the reasons why
other metrics may be insufficient.

While it is reasonable to expect that farmers in SSA are con-
strained in their ability to know the precise nutrient content of
their soils, farmers do form assessments of their soil fertility and
Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
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productivity (Niemeijer & Mazzucato, 2003). To our knowledge,
only a few studies in economics have sought to aid our under-
standing of this process absent measurement.2 Marenya et al.
(2008), for example, study farmers’ perceptions of soil fertility and
the impacts of fertility on yields in western Kenya. Using objective
measures of soil fertility, the authors find evidence of widespread
farmer misperception of soil fertility and show that these mispercep-
tions cannot be easily explained by observed plot or farmer charac-
teristics such as plot size or farmer’s gender or age. The Kenyan
farmers in the study, similar to the farmers of the south-central
highlands of Ethiopia (Karltun, Lemenih, & Tolera, 2013), use crop
yields as the key soil fertility indicator. Yet if yield changes lag
behind the changes in soil fertility, farmers may be unable to identify
important dynamic patterns in soil fertility and may be slow to
update their assessments. This delayed response can result in signif-
icant deterioration in soil fertility or render soils unresponsive. Once
soil has degraded below a productivity threshold, soil restoration can
become prohibitively costly and therefore ‘‘economically irre-
versible” (Antle et al., 2006). For example, a series of studies looked
at crop yields across a time series of land-use change in western
Kenya. Critical soil organic matter levels, pH, and other soil fertility
metrics declined over one to two decades (Moebius-Clune et al.,
2011), yet the resulting low yields remained over multi-decadal
time-scales despite fertilization. Judicious application of organic
resources was necessary to reverse the soil fertility decline
(Kimetu et al., 2008), but these application rates (18 tons per hec-
tare) were well above economic feasibility and, if not maintained,
yield reduced to pre-application levels within a few years
(Güereña et al., 2016).

Moreover, resource allocation and crop management can differ
according to perceived soil fertility. Tittonell, Vanlauwe, Leffelaar,
Shepherd, et al. (2005), for example, find differences in the timing
and intensity of crop management according to farmers’ percep-
tions of the quality of their land in Kenya. More fertile plots are
planted earlier, with more spacing between plantings, and are
weeded more often. These practices unsurprisingly lead to greater
yields. Therefore, subjective soil fertility perceptions matter. How-
ever, beyond these few papers, the formation of farmers’ soil fertil-
ity assessments as well as the interactions between farmers’
assessments and land management practices have not been
explored.

The formation of farmers’ perceptions about their soil fertility
and the farming practices that flow from these perceptions are
important to understanding the critical linkages between resource
endowments, crop and land management, and agricultural produc-
tivity. These linkages, in turn, may have major policy and program-
matic implications. From a research perspective, understanding the
correlates of farmers’ soil assessments is a first step towards eval-
uating the research value of these subjective measures. And if
objective measures of soil fertility are deemed preferable over sub-
jective measures, then the next logical question is whether
researchers should forsake free and publicly available data sets
for the expensive and time-consuming collection of their own soil
chemistry data; i.e., which of the soil-data-using-economist-camps
is preferred?

Massive amounts of resources have been funneled into the cre-
ation of publicly available soil data sets with high resolution and
either continental or global coverage, including but not limited to
AfSIS3 and the FAO’s Harmonized World Soil Database.4 In fact, the
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009
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publicly available household survey data collected by national statis-
tics agencies throughout SSA and overseen by the LSMS-ISA initiative
include files with soil data from the FAO. Researchers wanting an
even fuller complement of soil variables can easily match household
survey data with the AfSIS database using provided enumeration
level coordinates. But, in the end, these soil data sets are the result
of interpolation and are only as good as the data fed into the algo-
rithm and the underlying model. Moreover, interpolation itself
means that the areas between sampling points are estimated, which,
depending on the spatial resolution of the underlying data, may have
large associated error. Without a critical assessment of how well
these data represent local soil chemistry realities, as derived from
plot-level soil analysis, researchers cannot make good decisions
about which data may be most appropriate for their work. With very
few exceptions (e.g., Bui (2010)) comparative analyses of a publicly
available spatial soil databases with plot-level soil data are not avail-
able, and we have found no studies that assess the performance of
AfSIS at the local level beyond the model validation exercises (e.g.,
Hengl et al. (2015)).

With renewed international recognition of the important role
soils play in agricultural production, welfare dynamics, and carbon
sequestration (Barrett & Bevis, 2015; Lal, 2012; Lehmann & Kleber,
2015) as well as with major resources being devoted to the collec-
tion of a variety of subjective and objective, measured and esti-
mated indicators of soil fertility, it is imperative to assess what
these data can and cannot tell us. This paper helps to sort through
the implications by bringing together and comparing some of these
data sources.
3. Data and methods

Since crop choice may be both a function of and response to a
farmer’s perceived soil fertility, we limit our analysis to maize,
the main and most important cereal in east Africa. In Kenya and
Tanzania, for example, maize is cultivated on about four percent
of total land area (FAOSTAT, 2017). Tittonell, Vanlauwe, Leffelaar,
Rowe, et al. (2005) and Tittonell, Vanlauwe, Leffelaar, Shepherd,
et al. (2005) document that farmers in Kenya plant maize across
their landholdings, with the exception that famers tend not to
plant maize in their most fertile plots near homesteads. In Tanza-
nia, maize is grown by 48 percent of households. And while there
is some variation in perceived soil quality of maize plots within
households and maize plots vary by soil types in our data (see
Tables A2 and A3 in the Appendix), we cannot rule out the possibil-
ity that farmers’ crop choice may mask the true relationship
between perceptions, yields, and inputs. In fact, in Tanzania, plots
deemed to have good soil quality by the farmer are more likely to
be planted with maize than those deemed to have average soil
quality; likewise, plots with farmer-reported loamy soils are more
likely to be planted with maize.

Our data come from Tanzania and western Kenya and are
described in the subsections that follow; a summary of these data
sources is available in Table 1. After providing details on the data,
we describe the analytical methods used to answer our four
research questions.
5 We use good, average, and bad soil categorizations to mirror the questions in the
household surveys. Average should be understood as intermediate (not an arithmetic
mean).

6 The soil type question was identical across the two data sources. The soil quality
question offered several additional pre-coded options (poor, very poor, and not
productive at all) in Kenya that were later grouped into the category of bad to
correspond with the Tanzania data.

7 The soils in the research site in Kenya are acidic and do not contain carbonates so
that total stocks of soil carbon are equivalent to total organic carbon content.
3.1. Farmer-reported soil fertility measures, yields, inputs

We use a nationally representative sample of households from
the 2010–2011 wave of the publicly available Tanzania National
Panel Survey, data collected as part of the World Bank’s LSMS-
ISA project (TZNPS, 2016). From the full sample, we restrict our
analysis to the sub-sample of 2360 plots containing maize in the
main growing season across 1566 households, with plot-level data
on agricultural inputs and maize yield. A typical LSMS-ISA ques-
Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
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tionnaire asks respondents to specify soil quality and type for each
plot under cultivation without prompting or guidance so that
farmers’ responses should be purely based on their perceptions.
The responses are then grouped into pre-coded categories. For
the Tanzania LSMS-ISA, the pre-coded categories for soil quality
are good, average,5 or bad; for soil type or texture they are sandy,
loam, clay, or other. The presence of sampling weights allows us to
apply household-level population weights in the statistical analysis
that follows.

The standard modules of the LSMS-ISA questionnaire were
adopted for a household survey effort of over 300 households col-
lected in 2011–2012 in fifteen villages in the Nyando and Yala river
basins of rural western Kenya (Berazneva et al., 2017). We use data
for all maize-growing households for which soil analysis is avail-
able, for a sample size of 509 maize plots cultivated by 307 house-
holds. Identical to the LSMS-ISA survey, respondents classify their
soil quality and type based on their knowledge, as well as report
agricultural input and maize production levels. The near-identical
questions and classifications between the LSMS-ISA survey imple-
mented in Tanzania and that implemented in Kenya allow us to
easily compare across the two regions.6

Agricultural input and output variables are drawn from farmer
recall related to the last main season. Where applicable, we stan-
dardize input and output values by plot size. For Kenya, plot area
is measured with hand-held GPS units. For Tanzania, GPS-
measured plot areas are only available for a sub-set of all plots, so
we rely on imputed plot sizes as described in Palacios-Lopez and
Djima (2014). We also draw on a variety of plot- and household-
level characteristics from the survey data, relying mainly on those
variables observed consistently across the two countries.

3.2. Researcher-collected plot-level soil samples

In western Kenya, soil samples were collected from the largest
maize plot of each farm household at the end of the long rains sea-
son of 2011. Topsoil (0–20 cm) was randomly sampled from four
points across the plot, mixed together (homogenized), and analyzed
at the World Agroforestry Center’s Soil–Plant Spectral Diagnostics
Laboratory in Nairobi, Kenya. The samples were analyzed using
mid-infrared spectroscopy (MIR), a rapid nondestructive technique
for examining the chemical composition of materials (Cozzolino &
Moron, 2003; Shepherd & Walsh, 2002, 2007; Terhoeven-
Urselmans, Vagen, Spaargaren, & Shepherd, 2010). TheMIR analysis
provided information on several key soil characteristics: soil carbon
measured as percentage of total soil carbon by mass (% by weight
or % w/w),7 nitrogen content measured as percentage of total nitro-
gen in the soil by mass (% by weight or % w/w), soil pH (measured
on 1 to 7 scale), and cation exchange capacity (CEC) measured in mil-
liequivalent of hydrogen ions per 100 grams of dry soil (meq/100 g).
While, in the case of Kenya, we refer to the MIR analyzed soil samples
as objective, we acknowledge that, as with all soil measurement, MIR
comes with its own measurement error.

Soil carbon and total nitrogen content have been used as proxies
for soil fertility in the past (see, for example, Marenya and Barrett
(2009b)). These two measures are highly collinear and correspond
to soil organic matter content that can be transient and influenced
by farmmanagement practices. Soil pH and CEC, on the other hand,
ubjective and objective soil fertility metrics in east Africa: Implications for
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relate more strongly to soil texture and mineralogy, and therefore
are more stable indicators of soil fertility (Sparks, 1996). We also
classify soils as ‘‘fertile,” using thresholds and recommendations
for soils in western Kenya from the Kenya Agricultural Research
Institute (Mukhwana & Odera, 2009) and from the Cornell Soil
Health Test (Moebius-Clune et al., 2011). Fertile soil is defined as
soil with organic carbon content greater than or equal to 2% w/w,
total nitrogen content greater than or equal to 0.2% w/w, and pH
greater than or equal to 5.2. The resulting soil data offer on-the-
ground insight into the plot-level soil fertility of smallholder farm-
ers in rural western Kenya. In the discussion below, we refer to
these laboratory measurements as ‘‘measured soil data” or ‘‘soil
analysis data.” Descriptions and interpretations of measured soil
chemical fertility metrics are summarized in Table 2.
3.3. Geo-referenced and estimated soil fertility measures

We also match the household survey data with publicly avail-
able data from AfSIS. AfSIS, a collaborative soil ecosystem services
project, provides data on soil characteristics at 250-meter spatial
resolution (Vagen et al., 2010). The data were created by interpo-
lating soil characteristics (obtained via MIR and Near Infrared
Spectroscopy) from more than 28,000 sampling locations across
Africa using techniques detailed in Hengl et al. (2015).

The AfSIS data were downloaded from the Soil Property Maps of
Africa at 250 m, where tifs of a variety of soil characteristics are
available at 0–5 cm, 5–15 cm, 15–30 cm, and etc. depths. So as to
ensure that the AfSIS data are comparable with the laboratory
measured soil data in Kenya, we selected the data representing
the 0–20 cm depth where available (total soil nitrogen). Where
the 0–20 cm-depth level was not available (soil organic carbon,
pH, and CEC), we selected data representing the 0–5 cm and 5–
15 cm depths and averaged them together.

We paired the AfSIS data with the Kenyan and Tanzanian
households by extracting the gridded AfSIS data pertaining to the
geo-references available in the household surveys. In Kenya, these
points pertain to plots; in Tanzania, these points pertain to the
average of the enumeration area (EA), as per World Bank LSMS-
ISA restrictions.8 Although we cannot guarantee an exact match
up of AfSIS data with the household survey data in the case of Tan-
zania due to the EA offsets in the publicly available data, we note
that there is low variation in the AfSIS data overall due to the way
in which the AfSIS data were developed (estimation and interpola-
tion based on available data points); by design, these data will have
lower variation than the individual data points that informed them.
Due to this low variation, our results are not greatly affected by the
offsets, as data from different EAs differs very little. While the AfSIS
data repository provides information about a large number of soil
indicators, we extracted only the soil characteristics that best
matched the available soil analysis data in order to make valid com-
parisons: soil organic carbon, total soil nitrogen, pH, and CEC.9 While
8 In order to pair the AfSIS data with the Kenya plot-level geo-references, we
extracted the values for each soil characteristic as observed (i.e., we extracted the
value for the 250-meter cell in which the geo-referenced point fell). So as to pair the
AfSIS data with the Tanzania enumeration area geo-references, we extracted the
values for each soil characteristic as interpolated (i.e., we extracted a value produced
via interpolation from the values of the four nearest raster cells in the AfSIS data). We
took these two different approaches—strict extraction versus interpolation—for the
two countries due to the nature of the geo-references available to us in the household
survey data for each country. However, it should be noted that there was little
substantive difference between the observed and interpolated points in either
country. For eight EAs in Tanzania, the included geo-reference details landed in bodies
of water, meaning that we were unable to match these with AfSIS data. In these cases,
we drew from the median values across EAs within a ward.

9 Carbon: A/10; nitrogen: A/10; pH: A/10; CEC: no conversion necessary as the
AfSIS data are already in the same units as the soil analysis data. A indicates AfSIS
data.
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Table 2
Descriptions and interpretations of measured soil chemical fertility metrics.

Soil variable Description Sufficient values Deficient values

Organic carbon (% w/w) While not a plant nutrient, organic carbon is one of the best measures of overall
soil fertility and is highly influenced by management.

�2 <2

Total nitrogen (% w/w) Nitrogen is a major plant essential nutrient. As most nitrogen is held in the
organic matter, there is high colinearity between total nitrogen and organic
carbon in the soil.

�0.2 <0.2

pH Soil pH controls plant nutrient availability and toxicity. 5.2–7.5 <5.2, >7.5
CEC (meq/100 g) CEC is the measure of a soil to retain and hold nutrients and is an indication of

soil fertility potential.
<15 �15

10 Since Cobb-Douglas imposes constant elasticity of substitution and we are
cautious to impose this assumption, we also estimate a generalized quadratic
specification that is a more flexible functional form and allows for zero valued inputs
and the interaction between soil fertility and different inputs. The quadratic
specification shows very similar results to the Cobb-Douglas that are available from
authors upon request.
11 To address zero valued fertilizer input, we add one to all input levels before taking
logs.
12 MPP = dðyieldÞ

dðfertilizerÞ
yield

fertilizer

� �
.

6 J. Berazneva et al. /World Development xxx (2018) xxx–xxx
organic carbon and total nitrogen content are susceptible to change
over time, soil pH and CEC are more stable and therefore potentially
more appropriate measures of soil fertility to obtain through geo-
spatial data.

Summary statistics for all data are included in Table A1 in the
Appendix.

3.4. Analytical methods

We combine the four aforementioned data sets to address our
research questions. Graphically, Fig. 1 displays the sample of Ken-
yan plots with the soil analysis data (in circles) overlaid on the
AfSIS soil pH data. From this figure we can see the relative resolu-
tion of the two data sets. In the left panel we observe fifteen study
villages as well as the general variation in soil pH across western
Kenya. Zooming in on one of the villages in the Lower Nyando
region in the right panel, we see that the soil pH both decreases
in variation and becomes more pixelated as we approach the
250-meter resolution level.

Our statistical analysis relies mainly on difference-in-means
tests. To determine whether the means of perceived soil quality
and soil type differ significantly across agricultural inputs, maize
yield, and the plot-level soil analysis and geo-spatial AfSIS indica-
tors of soil fertility, we use the Tukey–Kramer test, which allows
for multiple pairwise comparisons while accounting for the
family-wise error rate. To control for additional variables and to
explore the heterogeneity in farmers’ perceptions, we also estimate
an ordered probit model (Greene, 2008) with a set of variables sim-
ilar to that included in the difference-in-means analysis. The
dependent ordered variable is farmers’ perceptions of soil quality
(1 = bad, 2 = average, 3 = good), while factors hypothesized to
affect farmers’ classification include estimated (AfSIS) soil organic
carbon and CEC, maize yield, agricultural inputs, and plot- and
household-level characteristics.

In addition, we undertake several descriptive analyses to assess
how well the geo-spatial AfSIS data capture the results from the
plot-level soil analysis data in Kenya. We provide scatter plots to
visually explore how the data differ by maize plot. We also report
pairwise correlation coefficients and equivalence tests at the vil-
lage and data set-level to assess whether the AfSIS data can statis-
tically capture the village-level means.

Finally we assess the role of soil information in the estimation
of production, cost, or profit functions. Environmental production
conditions, which may significantly vary over time and space, nec-
essarily influence both yields and farmers’ production decisions
(e.g., application of inputs). Not including conditions such as soil
fertility in the estimation of production functions results in omit-
ted variable bias (Sherlund et al., 2002). We therefore estimate a
series of production functions, starting with specifications that
contain no soil information then swapping in the three soil data
information types available to us.

The choice of functional form has received significant attention
in the literature, both in the estimation of deterministic and
stochastic production models. Some recent papers that focus on
Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
researchers and policy makers. World Development (2018), https://doi.org/10.1
maize production in developing countries use a Cobb-Douglas
specification (e.g., Arslan & Taylor, 2009), a quadratic specification
(e.g., Sheahan et al., 2013), or a translog specification (e.g., Abdulai
& Abdulai, 2017). The point of estimating a production function
here is to demonstrate whether the coefficients, fit, and predicted
yields and marginal physical products of inputs change after
including different soil variables. We estimate a Cobb-Douglas pro-
duction function that is linear in logarithms and often used for
screening and approximation purposes.10 We note, however, that
our results suggest only approximations to, for example, true
response of yields to nutrient applications and therefore should
not be taken literally. We report the results of the production func-
tion with two inputs (labor and fertilizer,11 normalized by land),
with and without controls, as well as the means of predicted yields
(in tons per hectare) and of marginal physical products of fertilizer
across all observations (in kilograms per hectare) for Kenya and Tan-
zania. Marginal physical product (MPP)12 measures the additional
output that results from the use of one additional unit of input. In
our case, MPP of fertilizer measures the additional maize yield in
kilograms from using one additional kilogram of fertilizer. By includ-
ing subjective (farmers’ perceptions) and objective (plot-level soil
analysis and AfSIS) soil variables in separate specifications, we can
assess whether the use of different types of available soil informa-
tion changes estimates and the decisions/conclusions that would
stem from those estimates.
4. Results and discussion

We present and discuss results for each of our four research
questions below. A synthesis of the findings is then offered in the
conclusion.

Before addressing our first research question, we provide three
useful descriptive findings that help to shed light on our main
results. First, we assess to what extent perceived soil quality mea-
sures vary within and across farms so as to understand whether
farmers are ranking their fields’ fertility relative to others’ plots,
relative to some local mean, or relative to their own plots. In a
decomposition of perceived (good, average, and bad) soil quality
within and between households and villages/enumeration areas
(EAs) (Table A2 in the Appendix), we find that variation in farmer
soil quality assessment at the plot level is largely due to differences
between farms within a given village or EA as opposed to within
farms.

Second, we note the correlations between farmer-perceived soil
quality and type in the cross-tabulation of frequencies shown in
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009
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Fig. 1. AfSIS soil pH with the Kenyan soil analysis study plots represented by circles. X and Y-axes are latitude and longitude in UTM WGS84.

Table 3
Cross tabulations of subjective soil quality and type (farmer-reported).

Soil type

Sandy Loam Clay Other Total

Number % Number % Number % Number % Number %

Kenya, 509 plots
Soil quality Good 19 15 85 30 20 23 – – 192 24

Average 68 55 136 48 50 57 8 57 422 52
Bad 37 30 62 22 18 20 6 43 195 24
Total 124 100 283 100 88 100 14 100 809 100

Tanzania, 2360 plots
Soil quality Good 180 43 722 47 239 63 11 48 1305 49

Average 186 44 732 48 124 33 8 35 1174 44
Bad 56 13 82 5 16 4 4 17 181 7
Total 422 100 1536 100 379 100 23 100 2660 100

J. Berazneva et al. /World Development xxx (2018) xxx–xxx 7
Table 3. Farmers distinguish between good and bad soils across all
soil types (sandy, loam, and clay) both in Kenya and Tanzania. For
example, 15 percent of sandy soils are thought to have good soil
quality as opposed to 30 percent of loam soils and 23 percent of
clay soils in Kenya. In Tanzania, 43 percent of sandy soils have good
soil quality as opposed to 47 percent of loam soils, and 63 percent
of clay soils.

Third, we note the major difference in distribution of plots
across farmer-perceived good, average, and bad classifications in
western Kenya and Tanzania (Table 4). In Tanzania, only six per-
cent of maize plots are classified by their farmers as bad relative
to 24 percent in Kenya. In Kenya, over half of all maize plots are
regarded as average quality, with a mostly even split of remaining
plots between good and bad. In both countries, a majority of farm-
ers classify their soil type as loam (though the percentage is higher
in Tanzania), with the remaining plots split between clay and
sandy soils.13
4.1. Question one: farmers’ perceptions of soil fertility vs. inputs and
yields

Table 4 displays the multiple pairwise comparisons of farmer-
reported soil quality and type against agricultural inputs andmaize
yield levels. The mean values of maize yield are highest on good
plots and lowest on bad plots in both Kenya and Tanzania. How-
ever, only in Kenya do we find that good plots produce statistically
significantly higher yields and only relative to bad plots. Therefore,
farmers either base their soil quality perceptions on the yield from
13 For the purposes of our work, we drop all plots classified as ‘‘other” from the
farmer-perceived soil type analysis. There is only a small percentage of plots in this
category in both Kenya and Tanzania.

Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
researchers and policy makers. World Development (2018), https://doi.org/10.1
their maize fields or report obtaining greater yields from plots they
believe to have good soil quality; the causal direction of this rela-
tionship is not clear from the survey data or our analysis. Loam
soils in Kenya have statistically significant higher yield values than
do sandy soils.

When looking at inputs used onmaize plots, we find that Tanza-
nian farmers are far more likely to apply some amount of chemical
fertilizer (e.g., DAP, urea) on their bad plots than on their good or
average ones. This may be an indication that farmers try to improve
the fertility of their bad plots through chemical fertilizer supple-
ments or that farmers believe their good or average plots are suffi-
ciently fertile. Average fertilizer application rates (column 4)
displayed are conditional on use (column 1). We find no difference
in binary or continuous chemical fertilizer use decisions based on
farmer-perceived soil quality in Kenya.We find, however, that loam
fields are more likely to receive chemical fertilizer than are sandy
fields, likely because loamy soils have higher clay and CEC contents
and therefore tend to be more responsive to fertilizer use (Lal,
2006). We also note that far more farmers in Kenya use chemical
fertilizer than do farmers in Tanzania and, therefore, may feel less
constrained in their decision to use fertilizer on any of their plots.

With respect to other agricultural inputs, we find that in Kenya
good quality plots are more likely to receive herbicide or pesticide
than bad plots, but this is not the case in Tanzania. Herbicides are
often used to prepare land for planting (in lieu of time-consuming
human-powered tilling), which could help to explain this finding.
Most strikingly, we find that farmers do not vary their organic
resource application based on perceptions of soil quality in either
Kenya or Tanzania. Only with respect to farmer-reported soil type
in Tanzania do we find any statistically significant difference; loam
soils are more likely to receive organic resources than are clay soils,
perhaps because soils high in clay already have relatively high
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009
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Table 4
Question 1: Farmer-reported soil data vs. inputs, yield.

Chemical
fertilizer

Herbicides,
pesticides

Organic
resources

Conditional
fertilizer

Maize yield

1 = yes 1 = yes 1 = yes kg/ha t/ha

KENYA
Soil quality, mean (st. err.)
Good (n = 124) 0.50 (0.04) a 0.19 (0.03) a 0.64 (0.04) a 137.97 (16.47) a 2.07 (0.14) a
Average (n = 262) 0.56 (0.03) a 0.14 (0.02) ab 0.66 (0.03) a 144.08 (10.70) a 1.73 (0.09) ab
Bad (n = 123) 0.55 (0.04) a 0.08 (0.03) b 0.67 (0.04) a 120.37 (15.72) a 1.38 (0.14) b

Soil type, mean (st. err.)
Clay (n = 88) 0.57 (0.05) ab 0.17 (0.04) a 0.65 (0.05) a 149.49 (18.42) a 1.85 (0.16) ab
Loam (n = 283) 0.60 (0.03) a 0.14 (0.02) a 0.67 (0.03) a 128.07 (10.02) a 1.83 (0.09) a
Sandy (n = 124) 0.42 (0.04) b 0.10 (0.03) a 0.64 (0.04) a 149.45 (18.06) a 1.44 (0.14) b

TANZANIA
Soil quality, mean (st. err.)
Good (n = 1152) 0.17 (0.01) a 0.09 (0.01) a 0.15 (0.01) a 146.90 (12.5) a 1.18 (0.04) a
Average (n = 1050) 0.18 (0.01) a 0.09 (0.01) a 0.14 (0.01) a 146.29 (11.13) a 1.11 (0.05) a
Bad (n = 158) 0.26 (0.04) a 0.10 (0.03) a 0.15 (0.03) a 97.04 (17.47) a 0.94 (0.11) a

Soil type, mean (st. err.)
Clay (n = 379) 0.21 (0.02) a 0.10 (0.02) a 0.10 (0.02) a 129.90 (112.93) a 1.10 (0.07) a
Loam (n = 1536) 0.17 (0.01) a 0.10 (0.01) a 0.15 (0.01) a 147.11 (160.79) a 1.15 (0.04) a
Sandy (n = 422) 0.20 (0.02) a 0.07 (0.01) a 0.16 (0.02) a 133.46 (15.8) a 1.01 (0.09) a

Note: Analysis at plot level for 2011–2012 long rains season. ’Other’ soil type is excluded. For Tanzania, observations are weighted using
household sampling weights and maize yield variable is winsorized at the 99th percentile of the raw distribution. Common letters indicate values
are not statistically different at the 95% confidence level using a Tukey-Kramer test, e.g., values both marked with ‘‘a” are not statistically
significantly different from each other at the 95% confidence level.

Table 5
Question 2: Farmer-reported vs. AfSIS soil data.

Carbon, C Nitrogen, N pH CEC Fertile soil**

(% by weight) (% by weight) 1–7 (meq/100 g) =1

KENYA
Soil quality, mean (st. err.)
Good (n = 67) 2.24 (0.06) a 0.25 (0.01) a 5.74 (0.03) a 24.42 (0.84) a 0.75 (0.05) a
Average (n = 173) 2.30 (0.04) a 0.24 (0.00) a 5.75 (0.02) a 24.49 (0.53) a 0.73 (0.03) a
Bad (n = 68) 2.27 (0.06) a 0.24 (0.01) a 5.78 (0.03) a 23.35 (0.84) a 0.66 (0.05) a

Soil type, mean (st. err.)
Clay (n = 57) 2.34 (0.07) a 0.25 (0.01) ab 5.72 (0.03) b 25.79 (0.91) a 0.81 (0.06) a
Loam (n = 166) 2.33 (0.04) a 0.25 (0.00) b 5.73 (0.02) b 23.63 (0.54) a 0.79 (0.03) a
Sandy (n = 75) 2.12 (0.06) b 0.23 (0.01) a 5.82 (0.03) a 24.17 (0.80) a 0.52 (0.05) b

TANZANIA
Soil quality, mean (st. err.)
Good (n = 1152) 1.67 (0.03) a 0.12 (0.00) a 6.12 (0.01) a 14.50 (0.22) a
Average (n = 1050) 1.57 (0.03) a 0.12 (0.00) a 6.12 (0.01) a 14.32 (0.23) a
Bad (n = 158) 1.46 (0.07) b 0.12 (0.01) a 6.06 (0.03) a 12.69 (0.51) b

Soil type, mean (st. err.)
Clay (n = 379) 1.80 (0.06) a 0.13 (0.00) a 6.08 (0.02) b 14.48 (0.38) a
Loam (n = 1536) 1.62 (0.03) b 0.12 (0.00) a 6.15 (0.01) a 14.74 (0.20) a
Sandy (n = 422) 1.36 (0.04) c 0.11 (0.00) b 6.04 (0.02) b 12.11 (0.33) b

Note: Analysis at plot level for 2011–2012 long rains season. ’Other’ soil type is excluded. For Tanzania, observations are weighted using
household sampling weights and maize yield variable is winsorized at the 99th percentile of the raw distribution. Common letters indicate values
are not statistically different at the 95% confidence level using a Tukey-Kramer test, e.g., values both marked with ‘‘a” are not statistically
significantly different from each other at the 95% confidence level.
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nutrient contents. As organic soil amendments help to rebuild
degraded soils, it is of concern that farmers do not appear to differ-
entiate organic resource application based on perceived soil qual-
ity, especially since most organic resources are generated from
on-farm sources (not market-purchased).
14 Fertile soil is defined as soil with organic carbon content greater than or equal to
2% w/w, total nitrogen content greater than or equal to 0.2% w/w, and pH greater than
or equal to 5.2.
4.2. Question two: farmers’ perceptions vs. objective measures of soil
fertility

Keeping in mind the limitations of the AfSIS data detailed above,
Table 5 provides results of statistical tests comparing the AfSIS data
to farmers’ perceptions of soil quality for both Kenya and Tanzania.
Please cite this article in press as: Berazneva, J., et al. Empirical assessment of s
researchers and policy makers. World Development (2018), https://doi.org/10.1
We find limited correspondence between farmer-perceived soil
quality and AfSIS soil data in Kenya. However, soil characteristics
vary significantly across the farmer-reported soil types. Soil pH, for
example, is lowest (more acidic) on plots with clay soils: 5.72 rela-
tive to 5.82 on plots with sandy soils. The pattern is similar for the
measurements of soil organic carbon, total nitrogen, pH, and CEC
from the soil analysis data in Kenya (Table A3 in the Appendix).

In addition, we find statistically significant relationships
between our indicator for fertile14 soils and soil type in Kenya.
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009
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Eighty-one percent of plots with fertile soils correspond to plots with
farmer-perceived clay soils while only 52 percent of plots with fer-
tile soils correspond to plots with farmer-perceived sandy soils.
Distinctions among soil textures, thus, appear to be the main corre-
lates for soil fertility classification in Kenya.

The picture is somewhat different in Tanzania (Table 5), where
we only have objective measurements of soil organic carbon, total
nitrogen, pH, and CEC from the AfSIS data. While farmer-perceived
soil type remains the main correlate for the differences in objective
measurements, plots with better soil quality, as reported by farm-
ers, also have statistically significantly higher carbon content and
CEC. Average soil organic carbon content on plots with good soil
quality, for example, is 1.67% w/w versus 1.57% w/w for plots with
average soil quality and 1.46% w/w for plots with bad soil quality.
As the variability between the means is relatively small (as it is in
Table 6
Question 2: Factors affecting farmers’ soil fertility perceptions (marginal effects).

Kenya

(1)
Variables Bad soil

Soil organic carbon (% w/w) 0.0292
(0.0501)

Soil CEC (meq/100 g) �0.00260
(0.00399)

Maize grain yield (t/ha) �0.0499***

(0.0153)
Chemical fertilizer: 1 = yes 0.132***

(0.0487)
Herbicides, pesticides: 1 = yes �0.0591

(0.0613)
Organic resources: 1 = yes 0.0438

(0.0408)
Improved seeds: 1 = yes 0.0391

(0.0559)
Plot size (ha) 0.00444

(0.0123)
Own plot: 1 = yes �0.161*

(0.0895)
Soil erosion: 1 = yes 0.0779*

(0.0401)
Slope: 1 = gentle �0.0186

(0.0395)
Slope: 1 = steep �0.0499

(0.118)
Distance from home (km) �0.0107

(0.0474)
Plot altitude (km) �0.0563

(0.0827)
Intercropped: 1 = yes �0.00584

(0.0459)
Household head female: 1 = yes 0.0338

(0.0536)
Household head age 0.000532

(0.00134)
Household head years of education �0.00151

(0.00473)
HH education: 1 = some primary or adult

HH education: 1 = completed primary

HH education: 1 = more than primary

Household size (adult equivalents) �0.00621
(0.00822)

Herd size (TLU) �0.00197
(0.00756)

Crop income (USD)

Observations 307

Note: Standard errors in parentheses. ***p < .01, **p < .05, *p < .1. First column for each
perception from average to bad soil; the second column captures the mean marginal effe
AfSIS.
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Kenya), the bigger sample perhaps increases statistical
significance.

Moving to multivariate analysis so as to ascertain whether the
above correlations hold up when controlling for plot and house-
hold characteristics, the mean marginal effects of the ordered pro-
bit estimations for Kenya and Tanzania are presented in Table 6.
Farmers’ perceptions in Kenya do not statistically correspond to
the chemical measurements of soil fertility indicators; in Tanzania,
plots perceived to be good have higher soil organic carbon, sup-
porting Table 5. Marginal effects on maize yield are statistically
significant and positive with good soils and negative with bad soils,
in both countries. This offers further evidence that farmers’ percep-
tions of soil fertility are correlated with maize yield (similar result
seen in Table 4), even when controlling for plot and household
characteristics; however, the magnitudes of the marginal effects
Tanzania

(2) (3) (4)
Good soil Bad soil Good soil

�0.0287 �0.0138*** 0.0433***

(0.0493) (0.00411) (0.0126)
0.00256 �0.000333 0.00105
(0.00394) (0.000519) (0.00163)
0.0491*** �0.00000541** 0.0000171**

(0.0147) (0.00000234) (0.00727)
�0.130*** 0.00797 �0.0251
(0.0479) (0.00850) (0.0267)
0.0582 �0.00596 0.0188
(0.0603) (0.0110) (0.0346)
�0.0431 �0.00722 0.0227
(0.0401) (0.00896) (0.0282)
�0.0385 �0.0112 0.0353
(0.0551) (0.00991) (0.0311)
�0.00436 �0.00148 0.00466
(0.0122) (0.00163) (0.00512)
0.158* 0.00832 �0.0262
(0.0889) (0.00954) (0.0300)
�0.0767* 0.0228*** �0.0719***

(0.0395) (0.00854) (0.0265)
0.0182 �0.00648 0.0204
(0.0386) (0.00663) (0.0208)
0.0533 0.0133 �0.0419
(0.142) (0.0159) (0.0499)
0.0106 �0.552 1.739
(0.0467) (0.395) (1.239)
0.0554 0.0365*** �0.115***

(0.0814) (0.00712) (0.0210)
0.00575 �0.00450 0.0142
(0.0452) (0.00623) (0.0196)
�0.0333 �0.0101 0.0319
(0.0527) (0.00756) (0.0237)
�0.000524 0.0000671 �0.000211
(0.00132) (0.000225) (0.000707)
0.00149
(0.00466)

0.00299 �0.00942
(0.00905) (0.0285)
0.0119 �0.0374
(0.00842) (0.0264)
�0.0209 0.0657
(0.0142) (0.0444)

0.00611 0.00190 �0.00599
(0.00809) (0.00141) (0.00442)
0.00194 �0.000861 0.00271
(0.00744) (0.000541) (0.00169)

�0.0000142 0.0000447
(0.0000104) (0.0000326)

307 2360 2360

country captures the mean marginal effect of each variable on changing farmer’s
ct on changing farmer’s perception from average to good soil. Soil variables are from
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are very small. In the case of Kenya, farmers are also less likely to
apply chemical fertilizer on plots perceived to have higher soil
quality and more likely where soil quality is considered low and
plots owned by the household are perceived to have better soils.
In both countries, farmers are less likely to report good soils where
they report erosion and vice versa.

Farmers’ perceptions of soil quality, therefore, seem to be
strongly associated with soil erosion and, as seen above, farmer-
reported yields across the two samples. As indicated above, the
direction of the soil quality and yield relationship cannot be deter-
mined from the data we have available. This indeterminate causal
relationship may pose endogeneity concerns for the estimation of
agricultural production or profit functions. Therefore, absent more
information or an exogenous instrument, one must exercise cau-
tion when predicting yields based on farmers’ perceptions of soil
fertility.
4.3. Question three: high resolution, publicly available soil data vs.
researcher-collected plot-level soil data

We find significant differences at the plot, village, and data set
levels between the AfSIS data and the plot-level soil analysis data
in Kenya. By construction, the AfSIS data show less variation than
the soil analysis data; they also suggest different summary statis-
tics than the soil analysis data. Table 7 displays the correlation
coefficients for the two data sets. While many coefficients are sta-
tistically significant (P < .05), they are only high for the two stable
indicators of soil fertility (0.68 for soil pH and 0.55 for soil CEC). For
the two indicators that can vary over time due to both exogenous
factors and endogenous management decisions, organic carbon
and total nitrogen, we see much lower correlation between the
two data sets. The higher correlation between the stable indicators
and the lower correlation between the indicators subject to change
over time is as we would expect for the full data set.

The correlation pattern is also readily observed graphically
(Fig. 2). The AfSIS data track the soil analysis data, with the soil
analysis data showing more variation overall. However, the differ-
ences are significant enough to reject most (52 of 64) t-tests of the
equivalence of means between the two data sets at the data set and
village levels (Table 8). The notable exceptions are again the more
stable soil fertility indicators—soil pH and CEC—where, in each
case, four of 16 t-tests show that the equivalence of means cannot
be rejected. The differences observed across the two data sets in
terms of average soil organic carbon and total nitrogen content
at both the village and data set level may be partially explained
by the differences in sampling periods, as these soil characteristics
are subject to change. However, pH and CEC, more stable indicators
Table 7
Question 3: Pairwise correlation coefficients between soil analysis

C N pH

C 1.00
N 0.96* 1.00
pH 0.13 0.07 1.00

CEC 0.80* 0.75* 0.43*

C 0.30* 0.23* -0.48*
N 0.37* 0.29* -0.29*
pH 0.11 0.10 0.68*

CEC 0.47* 0.37* 0.26*

Soil analysis data

Soil 
analysis 

data

AfSIS data

Note: Bonferroni-adjusted significance levels of 0.05 or less. N =
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of soil fertility, are also different for 13 and 12 (out of 15), respec-
tively, villages in the survey and across the full sample for soil pH.
The only metric not statistically distinguishable between data sets
at the full sample level is CEC.

When comparing the analyses involving the Kenya data, the
AfSIS and soil analysis data do exhibit similar patterns when bro-
ken down by subjective soil quality and type measures (Tables 5
and A3). We find in both the AfSIS and soil analysis data statisti-
cally significant differences in soil type (texture) by soil chemistry.
However, in moving from the general pattern to the details of the
analysis, we again find serious differences between the AfSIS and
soil analysis data. In particular, the difference in CEC by soil texture
is not observed in the AfSIS data, and the statistically significant
discernments of soil texture by soil chemistry differ between the
two data sets.

We conclude that these statistically significant differences at
the plot, village, and data set levels justify collection of plot-level
soil data for laboratory analysis despite the availability of AfSIS
data when precise plot-level soil data are important for the analy-
sis at hand (e.g., providing context-specific recommendations to
farmers) and especially when the soil chemistry is subject to
change over time and with farmer investment (i.e., organic carbon
and nitrogen).
4.4. Question four: role of soil information

Finally, we consider the role of soil fertility information in a pro-
duction function framework. Table 9 shows the results of a Cobb-
Douglas production function for Kenya and Tanzania. The first
and fifth columns of the table show estimated coefficients of the
specification without any soil information. The subsequent col-
umns represent the same basic model but add soil information:
first farmer-reported soil data, then, in the case of Kenya only,
the plot-level soil analysis data (soil organic carbon and CEC),
and then AfSIS data (soil organic carbon and CEC). We examine
the role of the soil information in three ways: we assess whether
and to what extent inclusion/exclusion of the different types of
data produce (1) changes in the magnitude and significance of
coefficients when soil variables are included, (2) changes in the
average of predicted maize yield, and (3) changes in the average
predicted marginal physical products (MPP) of fertilizer.

The coefficients on two input variables (labor and chemical fer-
tilizer, normalized by land area) are positive, statistically signifi-
cant, and stable across all specifications. The relative magnitudes
and significance levels of the control variables (not shown but
available by request) are similarly unchanged. The addition of soil
variables does not alter the magnitude of the coefficients on the
and AfSIS data for the four soil characteristics in Kenya.

CEC C N pH CEC

1.00

0.06 1.00
0.25* 0.82* 1.00
0.33* -0.47* -0.35* 1.00
0.55* 0.39* 0.58* 0.31* 1.00

AfSIS data

307 maize plots.
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Fig. 2. Question 3: Soil analysis vs. AfSIS data by plot across the four soil characteristics in Kenya: organic carbon, total nitrogen, pH, and CEC.

Table 8
Question 3: Test of equivalence of means between soil analysis and AfSIS data in Kenya.

Village Obs t-stat p-value t-stat p-value t-stat p-value t-stat p-value

Bumira B 21 8.49 0.00 21.77 0.00 6.09 0.00 14.98 0.00
Chamakanga 20 18.68 0.00 45.08 0.00 0.99 0.34 56.53 0.00
Chepkitin B 21 6.41 0.00 13.57 0.00 4.05 0.00 14.61 0.00
Jeveleli 21 3.22 0.00 8.58 0.00 4.74 0.00 18.28 0.00
Kagai 21 -1.82 0.08 2.94 0.01 -5.34 0.00 -2.46 0.02
Kanyibana A 17 -4.38 0.00 3.01 0.01 -10.62 0.00 -6.69 0.00
Kanyilaji B 21 6.35 0.00 14.80 0.00 -7.01 0.00 2.26 0.04
Kasagoma B 21 -3.09 0.01 3.25 0.00 2.36 0.03 -3.52 0.00
Kures 21 -4.36 0.00 8.98 0.00 -1.88 0.08 -1.99 0.06
Lelmolok A 20 3.09 0.01 7.94 0.00 2.35 0.03 6.09 0.00
Nyangera B 21 0.08 0.94 2.67 0.01 -1.96 0.06 0.46 0.65
Ogwedhi B 20 2.72 0.01 18.41 0.00 -2.60 0.02 4.99 0.00
Ratunwet 21 -6.70 0.00 -2.18 0.04 -6.80 0.00 -3.26 0.00
Tabet B 21 -0.70 0.49 5.53 0.00 0.38 0.71 0.36 0.72
Tulwet West 21 -3.78 0.00 1.88 0.07 -3.55 0.00 -3.41 0.00
All villages 308 -2.24 0.03 15.44 0.00 -2.65 0.01 -0.17 0.87

Soil organic carbon Soil nitrogen content Soil pH Soil CEC

Note: Highlighted values indicate failure to reject statistical difference between soil analysis and AfSIS data.
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Table 9
Question 4: Cobb-Douglas maize production function.

Kenya Tanzania

(1) (2) (3) (4) (5) (6) (7)
Variables No soil Farmer-reported Soil analysis AfSIS No soil Farmer-reported AfSIS

LN (Labor (days/ha or adult equivalents)) 0.275*** 0.274*** 0.280*** 0.310*** 0.369*** 0.369*** 0.366***

(0.0807) (0.0786) (0.0777) (0.0801) (0.0206) (0.0206) (0.0206)
LN (Fertilizer (kg/ha)) 0.0616* 0.0802** 0.0667** 0.0551* 0.113*** 0.112*** 0.114***

(0.0329) (0.0325) (0.0321) (0.0309) (0.0164) (0.0164) (0.0164)
Perceived soil quality: 1 = average 0.155 0.0222

(0.111) (0.0945)
Perceived soil quality: 1 = good 0.448*** 0.0804

(0.149) (0.0982)
Soil carbon (% by weight) 0.266*** 0.240 0.0851

(0.0775) (0.172) (0.0681)
Soil CEC (meq/100 g) �0.0184*** 0.0615* 0.0110

(0.00692) (0.0336) (0.00934)
Constant 4.525*** 4.392*** 5.246*** 4.085*** 5.450*** 5.431*** 5.312***

(1.242) (1.224) (1.144) (1.331) (0.313) (0.329) (0.353)

Observations 307 307 307 307 2358 2358 2358
R-squared 0.309 0.333 0.344 0.334 0.377 0.377 0.379
AIC (BIC) 750 (832) 743 (833) 738 (827) 743 (832) 6658 (7950) 6658 (7955) 6653 (7950)
Predicted yield (t/ha) 1.47 (0.05) 1.49 (0.05) 1.49 (0.05) 1.48 (0.05) 0.84 (0.02) 0.84 (0.02) 0.84 (0.02)
MPP fertilizer (kg/ha) conditional on use 1.85 (0.18) 2.41 (0.24) 2.00 (0.20) 1.66 (0.16) 2.54 (0.29) 2.53 (0.28) 2.58 (0.29)
MPP fertilizer for bad soils 1.95 (0.37) 1.71 (0.27)
MPP fertilizer for average soils 2.27 (0.25) 2.95 (0.57)
MPP fertilizer for good soils 3.53 (0.92) 2.27 (0.25)
MPP fertilizer for soils with soil carbon <2 1.64 (0.25) 3.14 (0.66) 2.55 (0.31)
MPP fertilizer for soils with soil carbon �2 2.21 (0.27) 1.56 (0.17) 2.69 (0.77)

Note: Dependent variable = LN (Maize yield (kg/ha)). Other variables include plot altitude (km), herd size (TLU), female household head, household head age and education,
indicator variables for intercropping, use of improved seeds, use of herbicides or pesticides, use of organic resources, plot ownership, soil erosion, plot slope, distance from
home (km), household size (adult equivalents) for Kenya, and geographic controls (block dummies for Kenya and enumeration area and district dummies for Tanzania).
Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Yield predictions adjusted under assumption of normally distributed errors followingWooldridge (2012).
In Kenya, estimation includes only plots with measured soil data. In Tanzania, estimation includes household-level sampling weights.
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input variables substantially or considerably increase the models’
fit, as represented by the R-squared values. However, the Akaike
information criterion (AIC) values are lower for the models that
include soil information than the AIC for the model without any
soil information in Kenya (Table 9). More importantly, the AIC is
lowest for the model that includes soil analysis data—having objec-
tive plot-level soil information improves the fit of the production
function.15

The mean and standard error of the predicted maize yields and
of the calculated marginal physical products of fertilizer, condi-
tional on use, across all observations are reported in the bottom
rows for all specifications. In neither Kenya nor Tanzania does
including soil information of any type considerably change the
mean of predicted yields or the magnitude of the standard errors.
The estimated average MPPs of chemical fertilizer in Kenya, how-
ever, are different (statistically significant) across the four specifi-
cations in Kenya. The average values of MPP across different plot
groupings—for plots with farmer-reported bad, average and good
soil quality in the model with subjective soil information and for
plots with low (less than 2% w/w) and high (greater or equal to
2% w/w) soil carbon in the models with objective soil informa-
tion—are also different. Differences in estimated MPP at the plot
level are shown in Fig. 3, where the distribution of MPPs within
Kenya is explored for each model. The left panel shows the MPPs
across the four model specifications that include control variables
at the maize plot level across the Kenya data set, while the right
panel zooms in on three villages in the Mid Nyando region (20 per-
cent of the sample). For low values of MPP (less than five kilograms
per hectare), the plot-specific MPP is nearly the same across the
models; for higher values of MPP, however, the MPP calculated
with different soil information differs. The use of farmers’ percep-
15 Vuong’s (1989) likelihood ratio test for equivalence of explanatory power in non-
nested models confirms this results with the data from Kenya.
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tions in the estimation of MPP produces the most extreme values,
followed by the soil analysis data, and no soils data; the AfSIS data
produces the most conservative estimates across the board. Those
plots with more extreme values also show a greater spread (varia-
tion) between estimates, suggesting that there is more noise in the
extreme values overall (which we would expect from a regression
coefficient). If we treat the soil analysis data as the ‘‘truth” in this
setting, then farmers’ perceptions offer an overestimate of the
return to fertilizer and AfSIS data offer an underestimate (these dif-
ferences are also statistically significant on average).

The caveats to this discussion are considerable, however. Esti-
mation of the production function offers regression to the mean.
While most soil fertility indicators (objective and subjective) are
positive and statistically significant for both Kenya and Tanzania,
they are small in magnitude and in Kenya correspond to soils with
relatively low empirical variation. Therefore, the addition of any
soil variables is unlikely to result in vast differences in estimates
derived from the underlying models, at least with the methods cur-
rently employed and when analyzed in similar contexts (good
soils, low empirical variation, and when prediction focuses on sam-
ple averages). However, having plot-level soil information from
soil analysis improves the overall fit of the production function
estimation and results in different average values of marginal
physical products with our data in Kenya. Since we do not observe
variation across time and are unable to control for other sources of
unobserved household or plot-level heterogeneity that could bias
our estimates, we are cautious to draw definitive conclusions from
our estimates of the Cobb-Douglas production function. Moreover,
the role of measurement error in our estimates may be non-trivial:
for example, the data on yields is gathered via recall and not direct
measurement and we combine all chemical fertilizer together,
instead of separating by type or nutrient.

What we can conclude, however, is that when the focus is on
specific plots or households, having detailed and accurate soil data
ubjective and objective soil fertility metrics in east Africa: Implications for
016/j.worlddev.2017.12.009

https://doi.org/10.1016/j.worlddev.2017.12.009


Fig. 3. Question 4: Increase in maize yield in response to one additional kilogram of fertilizer (estimated MPP of fertilizer) after the Cobb-Douglas production function with no
soil variables, farmers’ perceptions, soil analysis, and AfSIS soil variables for all plots in the Kenya data set and for plots in the three villages in Mid Nyando.
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still matters. Using data from western Kenya that display a greater
degree of soil fertility variation,16 Marenya and Barrett (2009b), for
example, find that crop production functions can exhibit von Liebig-
type responses. Maize yield response to nitrogen fertilizer in their
data depends on the state of soil fertility, and below some threshold
the input applications are not profitable.

While the soil data did not significantly change the estimated
coefficients or the R-squared values of maize production function
in our two data sets, our results do not suggest that there is not
a place for fine-grained soil data in agricultural research. First, by
including soil information we at least partially mitigate the omit-
ted variable bias since farmers most likely take soil information
into consideration when deciding on their input use. Second, soil
information changes the plot-level values and the averages of
MPP of fertilizer. Such fine-grained detail provided in plot-level
soil analysis data is needed to perform mechanistic and
processes-based research at the plot or individual farm scales,
whereas high spatial resolution estimated soil data, such as that
provided by AfSIS, may be sufficient to meet the needs of those
researchers interested in production functions on the country-
wide or regional scales. And while farmers’ perceptions or misper-
ceptions of soil fertility may not alter all the conclusions of a
production function analysis, this information can be incredibly
informative to extension efforts that seek to identify and correct
information gaps.
16 Farms in this data set are sampled based on plot age (time since conversion from
forest to agriculture) to capture cultivation time and, therefore, the degree of soil
fertility degradation.
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5. Conclusion

With a renewed appreciation for soil fertility in the interna-
tional development community, particularly in Sub-Saharan Africa,
this paper takes stock of the types of soil information currently
available to researchers, using data from east Africa. In summary,
we find that farmers’ perceptions of soil fertility are more corre-
lated with maize yields than with agricultural inputs and that
these correlations hold up even when we control for plot and
household characteristics. Farmers either base their soil quality
perceptions on the yield from their maize fields or report obtaining
greater yields from plots they believe to have good soil quality.
Other than herbicides and pesticides in Kenya (greater application
on good plots) and chemical fertilizers in Tanzania (greater appli-
cation on bad plots), farmers are not responding to perceived soil
quality with more or fewer inputs. We find few observable plot
and household level characteristics that are correlated with soils
assessment. In addition, our results suggest that the AfSIS data
may be useful to the researcher who is interested in relatively
stable soil fertility indicators—soil pH and CEC—at an aggregate
scale; however, we find enough statistically significant differences
at the plot, village, and data set levels to justify collection of plot-
level soil data for laboratory analysis when precise plot-level soil
data are important for the analysis at hand (e.g., providing
context-specific recommendations to farmers) and especially
when the soil chemistry is subject to change over time and with
farmer investment (i.e., organic carbon and nitrogen). At the same
time, the role of soil information in the estimation of simple agri-
cultural production functions appears limited when focusing on
ubjective and objective soil fertility metrics in east Africa: Implications for
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averages and when performing the analysis in a setting with good
soils and low empirical variation. However, our data from Kenya
show that including plot-level measured soil information improves
the overall fit of the production function and results in different
values of the marginal physical product of fertilizer.

Overall, we conclude that we have much more to learn about
farmers’ subjective soil fertility assessments and we caution
against using these assessments analytically (as not to introduce
endogeneity) when more objective metrics, especially plot level
soil samples, are available. But we should not stop asking these
questions of farmers either. Our analysis has also only considered
cross-sectional evidence and described statistical associations.
However, given that farmers’ perceptions can be learned and that
even objective measures vary over time, particularly when and
where nutrients are not added back to the soil, a dynamic analysis
of any of these correlations could provide even more utility to our
disciplines.

Moreover, we cannot exclusively rely on single experiment data
or small samples to answer questions about the how farmers make
judgments about their soil fertility. We need a major research
effort to understand how farmers value and use soil information.
In addition, there is continued need for survey modules that dig
deeper into how subjective soil fertility perceptions are formed.
Investments should be simultaneously made in (1) understanding
the actual learning process farmers use to arrive at their soil fertil-
Table A1
Summary statistics.

Kenya

Variable Mean Std. Dev. Min 10%

Household head female: 1 = yes 0.19 0.39 0.00
Household head (HH) age 51.29 15.48 20.00 31.0
HH years of education 6.73 4.54 0.00 0.00
HH education: 1 = none
HH education: 1 = some primary or adult
HH education: 1 = completed primary
HH education: 1 = more than primary
Household size (adult equivalents) 6.02 2.44 1.00 3.00
Crop income (USD)
Maize grain yield (t/ha) 1.77 1.41 0.02 0.38
Herd size (TLU) 2.35 2.74 0.00 0.03
Own plot: 1 = yes 0.95 0.21 0.00
Soil erosion: 1 = yes 0.45 0.50 0.00
Slope: 1 = flat 0.49 0.50 0.00
Slope: 1 = gentle 0.49 0.50 0.00
Slope: 1 = steep 0.02 0.15 0.00
Plot altitude (km) 1.61 0.33 1.21 1.25
Distance from home (km) 0.12 0.43 0.01 0.02
Plot size (ha) 1.92 1.86 0.05 0.37
Intercropped: 1 = yes 0.76 0.43 0.00
Chemical fertilizer: 1 = yes 0.59 0.49 0.00
Organic resources: 1 = yes 0.66 0.47 0.00
Herbicides, pesticides: 1 = yes 0.13 0.34 0.00
Improved seeds: 1 = yes 0.61 0.49 0.00
Perceived soil quality: 1 = bad 0.22 0.42 0.00
Perceived soil quality: 1 = average 0.56 0.50 0.00
Perceived soil quality: 1 = good 0.22 0.41 0.00
Perceived soil type: 1 = sandy 0.24 0.43 0.00
Perceived soil type: 1 = loam 0.54 0.50 0.00
Perceived soil type: 1 = clay 0.19 0.39 0.00
AfSIS: Soil carbon (% by weight) 2.28 0.51 0.85 1.80
AfSIS: Soil total nitrogen (% by weight) 0.24 0.06 0.11 0.17
AfSIS: Soil CEC (meq/100 g) 24.21 6.91 14.00 15.5
AfSIS: Soil pH (1–7) 5.75 0.23 5.40 5.45
Soil analysis: Soil carbon (% by weight) 2.43 1.23 0.83 1.29
Soil analysis: Soil total nitrogen (% by weight) 0.16 0.09 0.06 0.09
Soil analysis: Soil CEC (meq/100 g) 24.33 15.20 6.33 8.43
Soil analysis: Soil pH (1–7) 5.81 0.52 4.35 5.18

Note: N = 307 plots in Kenya and 2360 plots in Tanzania. Maize plot is the land area under
TLU is equivalent to 250 kg of animal body mass (0.7 cattle or 0.1 sheep/goat). For Tanzan
raw distribution.
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ity distinctions and (2) educating and informing farmers about soil
fertility and helping themmake their input and other management
decisions using this knowledge. From the policy makers’ stand
point, there is need to invest in development of efforts that map
soil fertility with more accuracy and in dissemination and use of
these data by extension agents and agricultural practitioners, so
that farmers and those interacting with them have the most accu-
rate soil information possible. As time goes on, we hope to see a
better convergence of farmer knowledge with objective soil fertil-
ity metrics, more reliable soil information data sets, and more per-
sonalized extension services and systems.

Additionally, questions remain about whether information on
soil fertility would alter farmers’ behavior in terms of inputs and
cropping decisions. In other words, is soil information a limiting
constraint to farm management in Sub-Saharan Africa? Investiga-
tion into such a question will also enable us to study what farmers
do with soil knowledge—does it help improve their farm decisions
and, ultimately, yields and welfare measures? Or are farmmanage-
ment decisions informed via some other process? Experimental or
quasi-experimental studies, for example, could include a soil
chemistry information treatment to assess farmers’ willingness
to pay for objective soil information and subsequent collection of
panel data could help track changes (if any) in farmers’ input and
cropping decisions. Such studies could help identify the causal
linkages between farmers’ perceptions, their management
Tanzania

90% Max Mean Std. Dev. Min 10% 90% Max

1.00 0.23 0.42 0.00 1.00
0 72.00 90.00 49.18 15.59 18.00 30.00 72.00 98.00

13.00 18.00
0.27 0.45 0.00 1.00
0.20 0.40 0.00 1.00
0.46 0.50 0.00 1.00
0.07 0.25 0.00 1.00

9.00 13.00 4.70 2.61 0.72 1.88 7.96 26.32
266 316 �1312 23 673 2040

3.57 8.34 1.07 1.30 0.00 0.13 2.53 5.47
5.60 17.66 2.38 6.38 0.00 0.00 5.87 39.00

1.00 0.88 0.32 0.00 1.00
1.00 0.14 0.35 0.00 1.00
1.00 0.63 0.48 0.00 1.00
1.00 0.33 0.47 0.00 1.00
1.00 0.04 0.20 0.00 1.00

2.21 2.25 1.04 0.52 0.01 0.31 1.67 2.16
0.17 6.29 3.79 8.39 0.00 0.00 9.00 70.00
4.42 14.35 1.23 2.36 0.00 0.12 2.68 39.26

1.00 0.65 0.48 0.00 1.00
1.00 0.19 0.39 0.00 1.00
1.00 0.13 0.34 0.00 1.00
1.00 0.09 0.29 0.00 1.00
1.00 0.11 0.31 0.00 1.00
1.00 0.07 0.25 0.00 1.00
1.00 0.44 0.50 0.00 1.00
1.00 0.49 0.50 0.00 1.00
1.00 0.18 0.38 0.00 1.00
1.00 0.65 0.48 0.00 1.00
1.00 0.16 0.37 0.00 1.00

2.85 3.45 1.59 0.89 0.54 0.79 2.98 5.53
0.33 0.39 0.12 0.06 0.03 0.06 0.19 0.47

0 32.00 34.00 13.67 6.34 5.38 7.36 23.22 40.48
6.05 6.60 6.09 0.41 5.05 5.63 6.52 8.14
3.81 9.05
0.26 0.87
42.87 100.37
6.46 7.09

maize cultivation (including the area where maize is intercropped with legumes); 1
ia, maize yields and distance from home are winsorized at the 99th percentile of the
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Table A2
Within vs. between variation in subjective soil quality (farmer-reported): Household and village for Kenya and household and enumeration area (EA) for Tanzania.

Plots Households Villages/EAs

Soil quality Number % Number % between % within Number % between % within

Kenya: 312 households, 15 villages
Good 124 24 98 32 75 15 100 25
Average 262 51 201 64 85 15 100 51
Bad 123 24 91 29 75 15 100 24
Total 509 100 390 125 80 45 400 33

Tanzania: 1566 households, 292 EAs
Good 1152 49 839 54 92 258 88 57
Average 1050 44 764 49 91 258 88 57
Bad 158 7 126 8 81 93 32 23
Total 2360 100 1729 110 91 592 203 49

Note: There are 1.63 maize plots per average household and 33.93 maize plots per average village in Kenya. There are 1.51 maize plots per average household and 8.08 maize
plots per average enumeration area in Tanzania.

Table A3
Kenya: Farmer-reported vs. plot-level soil analysis data.

Carbon, C Nitrogen, N pH CEC Fertile soil**

(% by weight) (% by weight) 1–7 (meq/100 g) =1

Soil quality, mean (st. err.)
Good (n = 67) 2.56 (0.15) a 0.17 (0.01) a 5.85 (0.06) a 25.26 (1.86) a 0.22 (0.05) a
Average (n = 173) 2.42 (0.09) a 0.16 (0.01) a 5.81 (0.04) a 24.29 (1.16) a 0.19 (0.03) a
Bad (n = 68) 2.32 (0.15) a 0.15 (0.01) a 5.78 (0.06) a 23.59 (1.85) a 0.18 (0.05) a

Soil type, mean (st. err.)
Clay (n = 57) 2.86 (0.16) b 0.19 (0.01) a 5.90 (0.07) a 30.65 (1.95) b 0.40 (0.05) a
Loam (n = 166) 2.34 (0.09) a 0.16 (0.01) ab 5.68 (0.04) b 21.89 (1.15) a 0.16 (0.03) a
Sandy (n = 75) 2.27 (0.14) a 0.15 (0.01) b 6.02 (0.06) a 24.23 (1.70) a 0.12 (0.04) b

Notes: Analysis at plot level for 2011–2012 long rains season. ’Other’ soil type is excluded. Common letters indicate values are not
statistically different at the 95% confidence level using a Tukey-Kramer test, e.g., values both marked with ‘‘a” are not statistically
significantly different from each other at the 95% confidence level.
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practices, and actual soil fertility to start addressing soil and
human poverty dynamics.
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Appendix A

Table A1 shows summary statistics for the data used in our
estimation.

Table A2 reports the variation between good, average, and bad
perceived soil quality within and between plots, households, and
villages in Kenya and enumeration areas (EAs) in Tanzania. The
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first panel of Table A1 indicates the number and percentage of
plots that have been designated by their farmers as good, average,
or bad in Kenya and Tanzania. In Kenya we see that little over half
(51 percent) of the total plots in the data set are perceived as aver-
age while there is an even split between good and bad (24 percent
each). In Tanzania, nearly half the plots are perceived as good (49
percent) and 44 percent are perceived as average. Only seven per-
cent are perceived as bad. To better understand the source of the
variation in perception, the next panels decompose soil quality
designation by between and within differences among households
and villages/EAs. We observe much greater variation within vil-
lages/EAs rather than within households in both Kenya and Tanza-
nia. For example, of the households that report at least one maize
plot with good quality in Tanzania, 92 percent of plots within the
same household are also deemed to have good soil. On the other
hand, of the EAs where someone has declared their soil as good,
57 percent of plots within that same EA have plots with good soil
quality. The same applies to the average and bad classifications too.

Similar to Table 5, Table A3 displays the multiple pairwise com-
parisons of farmer-reported soil quality and type with soil carbon,
nitrogen, pH and CEC from the AfSIS soil data.
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