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Proxy means test (PMT) poverty targeting tools have become common tools for benefi-
ciary targeting and poverty assessment where full means tests are costly. Currently
popular estimation procedures for generating these tools prioritize minimization of in-
sample prediction errors; however, the objective in generating such tools is out-of-
sample prediction. We present evidence that prioritizing minimal out-of-sample error,
identified through cross-validation and stochastic ensemble methods, in PMT tool devel-
opment can substantially improve the out-of-sample performance of these targeting
tools. We take the United States Agency for International Development (USAID) pov-
erty assessment tool and base data for demonstration of these methods; however, the
methods applied in this paper should be considered for PMT and other poverty-
targeting tool development more broadly. JEL codes: C140, I320, O220, O150.

Accurate targeting is one of the most important components of an effective and
efficient food security or social safety net intervention (Barrett and Lentz 2013;
Coady, Grosh, and Hoddinott 2004). To achieve accurate targeting, project im-
plementers seek to minimize rates of leakage (benefits reaching those who don’t
need them) and undercoverage (benefits not reaching those who do need them).
Full means tests for identification of project beneficiaries can include detailed ex-
penditure and/or consumption surveys; while effective, such tests are also time
consuming and expensive. Proxy means tests (PMTs), a shortcut to full means
tests, were first developed for the targeting of social programs in Latin American
countries during the 1980s. PMTs have become common tools for targeting and
poverty assessment where full means tests are costly (Coady, Grosh, and
Hoddinott 2004). Today they are used by USAID microenterprise project
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implementing partners, the World Food Program, and the World Bank, among
many others for the purpose of poverty assessment, beneficiary targeting, and
program monitoring and evaluation in developing countries (PAT 2014; WBG
2011).

PMT tools are typically developed by assignment of weights, or parameters, to
a number of easily verifiable household characteristics via either regression or
principal components analysis (PCA) in an available, nationally representative
data set. In the regression approach, household-level income/expenditures or pov-
erty status are regressed on household characteristics with the objective of select-
ing and parameterizing a subset of those characteristics to explain a significant
proportion of the variation in expenditures/income or poverty status. In the PCA
approach, the parameters are generated by extracting from a set of variables an
orthogonal linear combination of a subset of those variables that captures most of
the common variation (Filmer and Pritchett 2001; Hastie, Tibshirani, and
Friedman 2009). Although each approach has its advocates, those interested
solely in targeting tend to rely on regression approaches, while PCA has become
popular among those interested in generating asset indices that may or may not
be used for targeting. Note that the problem of developing tools for poverty tar-
geting can be a fundamentally different problem from that of generating asset in-
dices.1 This paper speaks only to the problem of developing targeting tools.

The regression approach to PMT tool development requires practitioners to
select from a large set of potential observables a subset of household characteris-
tics that can account for a substantial amount of the variation in the dependent
variable. In practice, this is usually done through stepwise regression and the
best performing tool is selected as that which performs best in-sample; more re-
cently, efforts to validate in-sample-generated tools via out-of-sample testing
have also been introduced (Schreiner 2006).

Once a PMT tool has been developed from a sample from a particular popula-
tion, the development practitioner can apply the tool to the subpopulation se-
lected for intervention to rank or classify households according to PMT score.
This process involves implementation of a brief household survey in the targeted
subpopulation so as to assign values for each of the household characteristics
identified during tool development. The observed household characteristics, xij,
are then multiplied by the PMT tool weights, hj, for each characteristic j to gener-
ate a PMT score for household i, as shown in equation (1):

PMTscorei ¼ Rjxijhj: (1)

1. For example, we might be concerned about endogeneity but not concerned about out-of-sample

performance when generating an asset index to estimate the relationship between school enrollment and

wealth, as in Filmer and Pritchett (2001). We have no such endogeneity concern when generating targeting

tools because we are not attempting causal inference; however, out-of-sample performance is a primary

concern.
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In many applications, the calculated PMT scores are used to rank households
from poorest to wealthiest2 and the poorest households are selected as program
beneficiaries. In the case of the USAID poverty assessment tools that will be de-
scribed below, the use is more conservative: the PMT scores are used to quan-
tify the number of households above and below an identified poverty threshold
so as to ensure proper allocation of USAID funds (PAT 2014). The methodo-
logical improvements we propose in this paper apply to both types of uses for
PMT tools.

Overall, the objective of a PMT tool is to quickly and accurately identify
households meeting particular criteria in a new setting (but under the same data-
generating process) using a model parameterized with previously available data.
Therefore, for PMT tools to serve their purpose, it is important that they perform
well not only within the data set or sample in which they were parameterized but
also, especially, within the new data set or sample. In other words, high out-of-
sample prediction accuracy must be prioritized in the development of PMT tools.
In the fields of machine learning and predictive analytics, stochastic ensemble
methods have been shown to perform very well out-of-sample due to the bias-
and variance-reducing features of such methods.

In this paper, we present evidence that the prioritization of the out-of-sample
performance of PMT targeting tools can substantially improve their out-of-
sample accuracy. We propose two methods for this prioritization: (1) selecting a
tool based on its cross-validation performance and (2) using stochastic ensemble
methods, which have cross-validation built in, to develop the tool. Stochastic en-
semble methods offer the additional feature, over and above traditional methods
combined with cross-validation, of selecting the variables with which to build
the tool, an otherwise time-consuming process. We take a set of PMT tools that
have been developed by the University of Maryland Institutional Reform and
Informal Sector (IRIS) Center for the purpose of USAID poverty assessment for
demonstration of these methods; however, the methods applied in this paper
should be considered for PMT and other poverty targeting tool development
more broadly.

We next present the USAID poverty assessment tool development and accu-
racy evaluation criteria; we then introduce the stochastic ensemble algorithms,
regression forests, and quantile regression forests, that we apply to the problem
of developing more accurate out-of-sample targeting tools; an explanation of our
data and methods follows. We close with results and conclusions.

2. There are several long-standing debates as to whether targeting tools, PCA type asset indices, and/

or the use of consumption or income data in the regression approach capture long run economic status,

permanent income, current consumption levels, current welfare, nonfood spending, or something else alto-

gether. Lee (2014) points out that much of the theoretical support for these various claims is dubious and

offers a theoretically grounded approach to the development of asset indices to measure poverty. As much

as possible, we remain agnostic on the particular type of well-being that PMT tools capture while noting

that the methods we discuss and the way in which we discuss them (e.g., their interpretation as capturing

household poverty status) are standard in the literature and in practice.
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I . TH E USAID PO V E R T Y AS S E S S M E N T TO O L

The development of the USAID poverty assessment tool (PAT) dates from 2000,
when the US Congress passed the Microenterprise for Self-Reliance and
International Anti-Corruption Act, mandating that half of all USAID microenter-
prise funds benefit the very poor (PAT 2014). In the context of this legislation,
the very poor are defined as those households living on less than the equivalent
of a dollar per day or those households considered “among the poorest 50 per-
cent of households below the country’s own national poverty line” (IRIS Center
2005). Subsequent legislation required USAID to develop and certify low-cost
tools to enable its microenterprise project-implementing partners3 to assess the
poverty status of microenterprise beneficiaries. USAID engaged the IRIS Center
at the University of Maryland in 2003 to create the tools. To date, the IRIS
Center has developed, and USAID has certified, tools for 38 countries.4

Using existing Living Standards Measurement Study (LSMS) data as well as
survey data collected by IRIS, the IRIS Center developed country-specific PAT
tools following the general PMT development procedure: they first identified a
subset of household characteristics (approximately 15) from the larger data set
of 70–125 available observables that accounted for the greatest variation in
household level income via an R-squared maximization routine, SAS MAXR5;
they then selected for the final tool the parameters identified by the statistical
model—whether ordinary least squares (OLS), quantile regression, logit, or
probit—that produced the highest predictive accuracy in-sample. In some cases,
but not all, out-of-sample validation tests were performed.

The predictive ability of the resulting PMT model was evaluated against a
number of accuracy criteria—total accuracy, poverty accuracy, undercoverage,
leakage, and the balanced poverty accuracy criterion—each of which is defined
below. These criteria allow for ex ante evaluation of the generated poverty as-
sessment tools via systematic consideration of each possible outcome/error type
as presented in the confusion matrix in table 1: true positive (the true very poor,
P ¼ 1, are identified by the tool as very poor, P̂ ¼ 1); false negative (the true very
poor, P ¼1, are identified by the tool as non very poor, P̂ ¼ 0); false positive (the
true non very poor, P ¼ 0, are identified by the tool as very poor, P̂ ¼ 1); true

3. The implementing partners who are required to make use of the PAT include “all projects and part-

ner organizations receiving at least US$100,000 from USAID in a fiscal year for microenterprise activities

in countries with a USAID-approved tool” (PAT 2014). In 2013, this entailed 71 partners receiving a total

of 110 million dollars (USAID MMR).

4. Albania, Azerbaijan, Bangladesh, Bolivia, Bosnia and Herzegovina, Cambodia, Colombia, East

Timor, Ecuador, El Salvador, Ethiopia, Ghana, Guatemala, Haiti, India, Indonesia, Jamaica, Kazakhstan,

Kenya, Kosovo, Liberia, Madagascar, Malawi, Mexico, Nepal, Nicaragua, Nigeria, Paraguay, Peru, The

Philippines, Rwanda, Senegal, Serbia, Tanzania, Tajikistan, Uganda, Vietnam, and the West Bank.

5. The MAXR procedure operates by selecting and rejecting variables one by one with the objective of

maximizing the improvement in a model’s R2 (SAS 2009).
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negative (and the true non very poor, P ¼ 0; are identified by the tool as non
very poor, P̂ ¼ 0).

The classification literature has developed many metrics based on confusion
matrices, such as that presented in table 1, for the assessment of classification ac-
curacy; the IRIS Center draws on standard metrics from the literature and has
also developed a new metric for their evaluation of the PAT. Following the IRIS
Center and relying on the categories given in table 1, the accuracy criteria we use
to assess PAT performance are defined as follows: total accuracy (TA) is the sum
of the correctly predicted very poor and the correctly predicted non very poor as
a percentage of the total sample, (TA¼ (TPþTN)/(TPþTNþFPþFN)). Poverty
accuracy (PA) is the correctly predicted very poor as a percentage of the total
true very poor, (PA¼TP/(TPþFN)). The undercoverage rate is the ratio of true
very poor incorrectly predicted as non very poor to total true very poor,
(UC¼FN/(TPþFN)), while the leakage rate is the ratio of true non very poor in-
correctly identified as very poor to total true very poor, (LE¼FP/(TPþFN)).
Finally, the balanced poverty accuracy criterion (BPAC) is the correctly predicted
very poor as a percentage of the true very poor minus the absolute difference be-
tween the undercoverage and leakage rates, (BPAC¼TP/(TPþFN)-jFN/
(TPþFN)-FP/(TPþFN)j). These accuracy criteria are summarized in table 2.

Total accuracy, or one minus mean squared error, is very familiar to econo-
mists as a metric for model assessment. However, there are several reasons why
total accuracy might not be an adequate metric for assessing the accuracy of a
poverty tool. Consider an example wherein a population of 100 includes 10
poor households. A tool that simply classifies the entire population as nonpoor
would have a total accuracy rate of 90 percent, which seems quite good.
However, this tool would have failed to identify a single poor household.
Therefore, metrics beyond total accuracy are necessary for assessment of poverty

TABLE 1. Poverty Prediction Outcomes

P51 P50

P̂ ¼ 1 True positive (TP) False positive (FP)
P̂ ¼ 0 False negative (FN) True negative (TN)

Source: Standard confusion matrix.

TABLE 2. Targeting Accuracy Metrics

Total accuracy TA 5 (TP1TN)/(TP1TN1FP1FN)

Poverty accuracy PA¼TP/(TPþFN)
Leakage LE¼FP/(TPþFN)
Undercoverage UC¼FN/(TPþFN)
Balanced poverty accuracy criterion BPAC¼TP/(TPþFN)-jFN/(TPþFN)-FP/(TPþFN)j

Source: Authors’ summary based on IRIS Center 2005.

McBride and Nichols 5

 at C
ornell U

niversity L
ibrary on O

ctober 31, 2016
http://w

ber.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: Table
Deleted Text: ,
Deleted Text: Table
Deleted Text: Table
Deleted Text: -
http://wber.oxfordjournals.org/


tool performance; these additional metrics include poverty accuracy (also known
as precision in the classification and predictive analytics literature) and underco-
verage (false negative) and leakage (false positive) rates. In the example just
given, the poverty accuracy of the tool would be 0 percent, and the undercover-
age rate would be 100 percent. These additional metrics offer a better picture of
the tool’s performance than does total accuracy alone. The BPAC combines these
three metrics—poverty accuracy, undercoverage, and leakage—by penalizing the
poverty accuracy rate with the extent to which the leakage and undercoverage
rates exceed one another. The BPAC is an innovation of the IRIS Center; it was
created to balance “the stipulations of the Congressional Mandate against the
practical implications of the assessment tools” (IRIS 2005). The other criteria are
standard in PMT development. However, it should be noted that IRIS computes
leakage in an unconventional manner.6

PAT model selection for each country was ultimately made by IRIS based on
the BPAC results in-sample. While we follow the prioritization of the BPAC crite-
ria in the analysis that follows, the methods we propose can just as easily be used
to meet other prioritized accuracy criteria.

I I . ST O C H A S T I C EN S E M B L E ME T H O D S: RE G R E S S I O N FO R E S T S A N D

QU A N T I L E RE G R E S S I O N FO R E S T S

Classification and regression trees are a class of supervised learning methods that
produce predictive models via stratification of a feature (in the case of poverty
tool development, a feature is a variable or characteristic) space into a number of
regions following a decision rule (Hastie, Tibshirani, and Friedman 2009). A ca-
nonical and intuitive example of a classification tree is that of predicting, based
on a number of features such as age, gender, and class, who survived the sinking
of the Titanic.7 While both classification and regression trees can be used to
make predictions regarding the poverty status of households based on observable
household characteristics, this paper focuses on regression and, in particular,
quantile regression forests due to the advantages the latter offers in terms of mak-
ing predictions about households concentrated at the lower end of the income
distribution.

Regression trees operate via a recursive binary splitting algorithm as follows
(Hastie, Tibshirani, and Friedman 2009): for N observations of response

6. Whereas leakage rates are commonly computed as FP/(TPþFP), IRIS computes leakage rates as FP/

(TPþFN). This adjustment to the denominator in the calculation of leakage rates has two consequences:

1) it can lead to calculated leakage rates that are greater than one, producing a heavy penalty in the calcu-

lation of BPAC where leakage occurs (it is not clear that IRIS intended for this outcome); 2) it keeps con-

stant the denominator across poverty accuracy, undercoverage, and leakage rates, allowing IRIS to easily

perform the addition and subtraction necessary for the BPAC calculation. We assume this was IRIS’s pur-

pose in modifying the denominator.

7. See Varian (2014) for an example. Many examples and data are also available at The

Comprehensive R Archive Network at http://cran.r-project.org.
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variable, yi; and a vector of characteristics, xij, where i ¼ 1; 2; . . . N is the number
of observations and j¼1,2,. . .J is the number of features, consider the splitting
variable, xj, and the split point, where xij ¼ s, that define the half planes R1 and
R2, as indicated in equation (2):

R1 j; sð Þ ¼ fxijjxij � sg and R2 j; sð Þ ¼ fxijjxij > sg: (2)

The algorithm selects xj and s to solve the minimization problem,

min
js
½min

c1

Rxi2R1 j;sð Þ yi � c1ð Þ2 þmin
c2

Rxi2R2 j;sð Þ yi � c2ð Þ2�; (3)

where the inner minimizations are solved by

c1 ¼
1

n
Riðyijxi 2 R1 j; sð ÞÞ and c2 ¼

1

n
Ri yijxi 2 R2 j; sð ÞÞ:ð (4)

In words, the regression tree algorithm chooses the variable, xj (the splitting vari-
able), and the value of that variable, s (the split point), which minimizes the
summed squared distance between the mean response variable and the actual re-
sponse variables for the observations found in each of the resulting regions. In
this manner, the algorithm effectively weights the response variables by the pre-
dictive value of the observations within each region (Lin and Jeon 2006). Once
the optimal split in equation (3) is identified, the algorithm proceeds within the
new partitions.

One way to think about a regression tree is as an OLS regression for which
one knows in advance all of the split variables and split points across which to
partition, and then conditionally partition, the feature space and therefore de-
fines appropriate binary variables and interaction terms to capture these parti-
tions. Such an OLS would return the same results as a regression tree built over
the same data. However, such split variables and split points are not known in
advance; therefore, what the regression tree algorithm offers over and above an
OLS is a heuristic method for the selection of those variables, split points, and
conditional splits—the binary variables and their interactions—with which to
build the model so as to minimize prediction error. To do this using OLS would
require a stepwise regression that iterates and then conditionally iterates through
each split point of each variable—a computationally intensive process.

The recursive binary splitting process of the regression tree can continue until
a stopping criterion is reached; however, larger trees may overfit the data. In the
case that we want to bootstrap over this algorithm—a good idea, as the algo-
rithm may make different splitting decisions in different subsets of the data—it
becomes apparent that a bias for variance trade-off is made as we allow the trees

McBride and Nichols 7
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to grow large.8 A collection of larger trees will have high variance but low bias
while a collection of smaller trees will have low variance but high bias.

Fortunately, in this setting, the bias-variance trade-off can be somewhat over-
come via a process called bootstrap aggregation, or bagging. Bagging involves
bootstrapping a number of approximately unbiased and identically distributed
regression trees and then averaging across them so as to reduce the variance of
the predictor. However, bagging cannot address the persistent variance that
arises due to the fact that the trees themselves are correlated, as they were gener-
ated over the same feature space. Consider, for example, a set of B identically
distributed but correlated regression trees, each with variance r2. If q represents
the pairwise correlation between the trees, then the variance of the average of
these trees is qr2 þ 1�q

B r2. As B grows large, the term 1�q
B r2 will approach zero,

reducing the overall variance. However, the first term, qr2, persists (Hastie,
Tibshirani, and Friedman 2009).

Reducing this persistent variance component of the bagged predictor is the in-
novation of random forests. Introduced by Breiman (2001), regression forests
improve the variance reduction feature of bagged regression trees by decorrelat-
ing the trees, and thereby reducing q via a random selection of the features (vari-
ables) over which the algorithm may split. The number of random features
available to the algorithm at any split is typically limited to one-third of the total
number of features (Hastie, Tibshirani, and Friedman 2009); this is a tuning pa-
rameter of the algorithm.

Critically, in a random forest algorithm, the mean squared error of the predic-
tion is estimated in the “out of bag” sample (OOB), the (on average) third of the
training data set on which any given tree has not been built (Breiman 2001), in a
manner similar to k-fold cross-validation. This OOB sample offers an unbiased
estimate of the model’s performance out-of-sample.

The random forest training algorithm produces a collection of B trees,
denoted as T x; Hbð Þf gB

1 , where Hb indicates the bth tree. The regression forest
predictor is then the bagged prediction

f̂ xið Þ ¼
1

B

XB

b¼1

Tðxi; HbÞ: (5)

The regression forest algorithm is detailed in the Appendix.
It has been shown that regression forests offer consistent and approximately

unbiased estimates of the conditional mean of a response variable (Breiman
2004; Hastie, Tibshirani, and Friedman 2009). However, as elaborated by
Koenker (2005), among others, the conditional mean tells only part of the story

8. A variety of options for “pruning” trees exist to address these issues in a regression tree framework

(Hastie, Tibshirani, and Friedman 2009). We don’t discuss these here but move on instead to random for-

ests, which address the problem without pruning.
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of the conditional distribution of y given X. Therefore, we also apply quantile re-
gression forests, as developed by Meinshausen (2006), to our PMT tool
development.

Meinshausen (2006) draws on insights from Lin and Jeon (2006), who show
that random forest predictors can be thought of as weighted means of the re-
sponse variable, yi, as shown in equation (6):

f̂ xið Þ ¼
1

B

XB

b¼1

Tðxi; HbÞ ¼
XN

i¼1

PB
b¼1 wiðxi; HbÞ

b
yi: (6)

In equation (6), wiðxi; HÞ represents the weight vector obtained by averaging
over the observed values in a given region Rl, (l ¼ 1 . . . LÞ: Application of the
weight vector to the response variable is simply another way of considering the
conditional averaging of the response variable, as represented in equation (4)
above and shown in equation (7):

wi xi; Hð Þyi ¼
1

n
Ri yixi 2 Rl j; sð Þð Þ: (7)

With this insight, Meinshausen (2006) produces quantile regression forests, as a
generalization of regression forests in which not only the conditional mean, but the
entire conditional distribution of the response variable is estimated (Equation 8):

f̂ y xið Þ ¼
XN

i¼1

PB
b¼1 wiðxi; HbÞ

b
1 yi � yf g: (8)

Meinshausen (2006) provides a proof for the consistency of this method and
demonstrates the gains in predictive performance of quantile regression forests
over linear quantile regression. These gains are due to the fact that quantile re-
gression forests retain all the bias-minimizing and variance-reducing components
of regression forests in that they bootstrap aggregate across a great number of
decorrelated trees; quantile regression forests additionally offer the ability to
make predictions across the conditional distribution. A quantile approach is par-
ticularly useful for the purposes of PMT tool development due to the fact that
the very poor are often concentrated at one end of the conditional income distri-
bution, far from the conditional mean. The quantile regression forest algorithm
is detailed in the Appendix.

The advantages that stochastic ensemble methods, such as the regression for-
est and quantile regression forest algorithms, offer over traditional PMT devel-
opment tools include the selection of the variables that offer the greatest
predictive accuracy without the need to resort to stepwise regression and/or run-
ning multiple model specifications—rather, the algorithms build the model—and
built-in cross-validation via the out-of-bag error estimates.

McBride and Nichols 9
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Therefore, using regression forest and quantile regression forest algorithms,
we expect to realize improvements in the out-of-sample targeting accuracy of
the PAT. We note, however, that this method requires the critical assumption
that the data-generating process remains unchanged between tool development
and tool application. That is, the algorithm can perform well out of sample but
not out of population. This limitation plagues any sample-based estimation
routine.

I I I . EM P I R I C A L ME T H O D A N D DA T A

We produce a set of country-specific examples from the survey data that was
used by the IRIS Center to construct their PATs. We replicate the PAT develop-
ment process by extracting the same variables that IRIS extracted from the same
data sets and then generating identical estimation models. We are limited in our
replication process to the use of LSMS data sets that are publicly available. We
have additionally constrained ourselves to the LSMS data sets for which income
or expenditure aggregates are also publicly available due to the challenges of pre-
cisely replicating an income or expenditure aggregate that IRIS may have
generated.

From the publicly available data sets meeting these criteria, we selected three
nearly arbitrarily: the 2005 Bolivia Encuesta de Hogares (EH), the 2001 Timor
Leste Living Standards Survey (TLSS), and the 2004-2005 Malawi
Second Integrated Household Survey (IHS2). These data sets present a reason-
able representation of the settings in which PATs have been developed. Each
data set differs in number of observations, poverty level, and IRIS-selected
household characteristics. The data are summarized in table 3, where we
can see that the number of household level observations ranges from 1,800
in East Timor to 11,280 in Malawi. Likewise, the USAID-defined poverty
rates range considerably, from 24.2 percent in Bolivia to 64.8 percent in
Malawi.

The fourth column of table 3 displays the household-level characteristics se-
lected by IRIS for PAT tool development; many characteristics such as household
size, age of household head, household construction materials, and material pos-
sessions are common across data sets.

We provide the IRIS reported in-sample accuracy estimates for each country-
level data set in each row 1 of Appendix table A1. These are the estimates on
which the IRIS model selection was made. We provide the IRIS-reported out-
of-sample accuracy assessment results for each country in rows 2–4 of table A1.
We replicate the IRIS in-sample models and report the replication estimates in
each row 5 of Appendix table A1. Within-country comparisons of our replica-
tion estimates (table A1, row 5), with the estimates reported by IRIS (table A1,
row 1), serve as a check on how well we have replicated the PAT tool develop-
ment process. In the case of Bolivia, our replication estimates do not perform as

10 THE WORLD BANK ECONOMIC REVIEW
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well as those of IRIS; however, it should be noted that IRIS built the Bolivia
PAT tool on a randomly selected subset of the data. We cannot replicate pre-
cisely the same random draw and so report the full sample estimates. The full
sample replication does not perform as well as the half sample performance re-
ported by IRIS, but that half sample is unusual in its high performance, and not
representative of the thousand half sample splits we explored or that IRIS re-
ported for their calculation of out-of-sample performance (see rows 2 through
4 of Appendix table A1 for Bolivia). For this reason, we are not concerned
about spuriously overestimating the performance of our methods relative to
those of IRIS and therefore retain this data set in our analysis. In the case of
East Timor and Malawi, our replication estimates are very close to those re-
ported by IRIS, and we are likewise not concerned about unfair comparisons of
our methods with those of IRIS.

Our empirical approach is to randomly draw, with replacement, two samples
of size N/2 from each country-level data set, producing a training sample and a

TABLE 3. LSMS Surveys and Variables Used in PAT Development and
Replicated by Authors

County Data Obs. IRIS selected variables Poverty rate (%)

Bolivia 2005 Encuesta de
Hogares (EH)

4,086 hhsize, hhsize2, age head, age
head2, regions, rural, sublease,
brick wall, wood wall, dirt
floor, cement floor, fridge, ra-
dio, tv, dvd, fan, car, number
beds, number kitchens, num-
ber computers, sheep

24.03

Malawi 2004-2005 Second
Integrated
Household
Survey (IHS2)

11,280 hhsize, hhsize2, age head, age
head2, regions, rural, never
married, share of adults with
out education, share of adults
who can read, number of
rooms, cement floor, electric-
ity, flush toilet, soap, bed,
bike, music player, coffee ta-
ble, iron, garden, goats

64.78

East Timor 2001 Timor Leste
Living Standards
Survey (TLSS)

1,800 hhsize, hhsize2, age head, age
head2, regions, rattantin wall,
leaf roof, concrete or tile roof,
number rooms, private water,
shared water, toilet is a bowl
or bucket, electricity light, pri-
vate light, fan, number of
adults who read, farmland,
number of axes number of
baskets, number of chickens

44.73

Source: Authors’ summary based on the data indicated as well as reports from IRIS Center 2007,
2009, and 2012.
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testing sample. Over this split of the data, we first reproduce IRIS’s methods,
training their preferred model in the training data and then testing it on 1,000
bootstrap samples of the testing data.9 However, instead of basing tool selec-
tion on in-sample performance as IRIS does, we perform k-fold cross-validation
in the training sample and select as our preferred model the one that produ-
ces the best BPAC in cross-validation. For this exercise, we use k-fold cross-
validation; in particular, we produce 500 iterations of three-fold cross-
validation, which entails training the model on two-thirds of the training data
set and assessing performance in the remaining third of the training data set on
which the model was not trained. We take this approach because it most closely
approximates the out-of-bag error produced using the stochastic ensemble
methods.

FIGURE 1. Total and Poverty Accuracy by Country and Estimation Procedure
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Notes: “IRIS Q(#)” indicates quantile regression (Q) estimated by IRIS at the #th
quantile. “CV Q(#)” indicates quantile regression estimated by the authors using
cross-validation (CV) at the #th quantile. “SE QRF(#)” indicates quantile regres-
sion forest (QRF) estimated by the authors using stochastic ensemble methods
(SE) at the #th quantile. “IRIS probit” indicates probit regression estimated by
IRIS. Error bars reflect the nonparametric confidence intervals.
Source: Authors’ and IRIS center’s estimates using data and procedures detailed
in the text.

9. This method was first used in Schreiner (2006).
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Following the method for out-of-sample testing used by the IRIS center, we
test the classification accuracy of the cross-validation-selected tool using 1,000
bootstrapped samples of the testing sample. The out-of-sample performance of
this tool in the testing sample is presented for each country in figures 1–3, as well
as in Appendix table A1, rows 6 through 8. We refer to this approach of using
cross-validation to select the best-performing model in the training sample as the
“cross-validation” approach throughout remaining sections to distinguish it
from both IRIS’s approach and from the stochastic ensemble method approach
(note that stochastic ensemble methods also use cross-validation; however, it is
referred to as out-of-bag error in that setting).

We next turn to the stochastic ensemble methods. Over the same split of the
data as used for the cross-validation approach, the random forest and quantile
regression forest models are built in the training sample where, for any given
ðxi; yiÞ, an average of two-thirds of the training data are used to build bagged re-
gression trees and the remaining third is reserved for out-of-bag, and therefore
unbiased, running estimates of the prediction error over a forest of 500 trees.10

We run the regression forest and quantile regression forest algorithms in R using
packages developed by Liaw and Wiener (2002) and Meinshausen (2016), re-
spectively. We select our preferred model as that with the lowest BPAC error in

FIGUR E 1. Contiued
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10. Five hundred trees is the default setting in the randomForest package in R. From casual observa-

tion, the OOB error has largely stabilized by the time the forest has reached 200–300 trees; this observa-

tion is consistent with the literature (Hastie, Tibshirani, and Friedman 2009).
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the OOB sample. This model is then taken to the testing sample to assess
classification accuracy. The performance of this tool in the testing sample is pre-
sented for each country in figures 1–3, as well as in Appendix table A1, rows 9
through 11.

We statistically compare the mean of the IRIS-reported bootstrapped accuracy
estimates with those produced using both of our approaches to tool
development—the cross-validation approach and the stochastic ensemble
approach—using Tukey Kramer tests, selected to account for the family-wise er-
ror rate. The results are reported in table 4.

Finally, so as to assess the robustness of our results to the poverty thresholds
in each country, we report in Appendix table A2 the performance of our methods
as compared with those of IRIS under two new poverty lines: one that is half the
original poverty line and a second that is twice the original poverty line. We can-
not observe actual IRIS tool performance metrics under these new poverty lines,
but we estimate the best possible results IRIS could have gotten using their

FIGURE 2. Leakage and Undercoverage Rates by Country and Estimation
Procedure
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Notes: “IRIS Q(#)” indicates quantile regression (Q) estimated by IRIS at the #th
quantile. “CV Q(#)” indicates quantile regression estimated by the authors using
cross-validation (CV) at the #th quantile. “SE QRF(#)” indicates quantile regres-
sion forest (QRF) estimated by the authors using stochastic ensemble methods
(SE) at the #th quantile. “IRIS probit” indicates probit regression estimated by
IRIS. Error bars reflect the nonparametric confidence intervals.
Source: Authors’ and IRIS center’s estimates using data and procedures detailed
in the text.
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methods and preferred tools by adapting those tools to obtain the greatest BPAC
under the new poverty lines. In practice, this means selection of the quantile that
offers the best in-sample BPAC under the new poverty lines in Bolivia and
Malawi. In the case of East Timor, we include a quantile regression approach
along with IRIS’s preferred approach under the original poverty line, the probit
model, because the probit performs poorly at the lower poverty line. This means
we are comparing our cross-validation and ensemble method approaches to the
best possible outcomes of the approach employed by IRIS.

IV. RE S U L T S

Results of the cross-validation (CV) and stochastic ensemble (SE) approaches to
PMT tool development are displayed graphically in figures 1, 2, and 3 and nu-
merically in Appendix table A1. In both formats, we compare the out-of-sample
bootstrap accuracy estimates of the IRIS-produced tools (rows 2–4 in the table
A1) with those produced by each of our approaches. The confidence bars in each
figure display the nonparametric bootstrap confidence intervals, where the lower
bound is the 2.5th percentile and upper bound is the 97.5th percentile bootstrap
estimate. Standard errors are reported in table A1. In addition, Tukey Kramer
tests of the differences in the out-of-sample bootstrap means are reported in
table 4.

While cross-validation improves on the total accuracy of the IRIS-generated
tool only in the case of Bolivia and the stochastic ensemble methods do not

FIGUR E 2. Continued.
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improve on the total accuracy at all (figure 1, first graph), gains in poverty accu-
racy are observed using cross-validation across all countries and using stochastic
ensemble methods in both East Timor and Malawi (figure 1, second graph).
Recall from the discussion above that total accuracy has serious limitations as a
metric for assessing the performance of a poverty-targeting tool.

From figure 2 (first graph), we can see that these gains in poverty accuracy are
not without trade-offs: the leakage rates for the cross-validation and stochastic
ensemble approaches are significantly greater than those reported for the IRIS-
generated tools in both Bolivia and East Timor, meaning that these tools err on
the side of classifying nonpoor households as poor. Given that leakage rates are
heavily penalized by the IRIS accuracy metrics, these increases are not very sur-
prising. Meanwhile, the cross-validation approach performs much better than
IRIS’s in terms of undercoverage rates; the undercoverage rate is decreased
across all countries (figure 2, second graph). The stochastic ensemble approach
likewise outperforms IRIS’s in both East Timor and Malawi.

FIGURE 3. Balanced Poverty Accuracy Criteria by Country and Estimation
Procedure
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Notes: “IRIS Q(#)” indicates quantile regression (Q) estimated by IRIS at the #th
quantile. “CV Q(#)” indicates quantile regression estimated by the authors using
cross-validation (CV) at the #th quantile. “SE QRF(#)” indicates quantile regres-
sion forest (QRF) estimated by the authors using stochastic ensemble methods
(SE) at the #th quantile. “IRIS probit” indicates probit regression estimated by
IRIS. Error bars reflect the nonparametric confidence intervals.
Source: Authors’ and IRIS center’s estimates using data and procedures detailed
in the text.
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The critical question, then, is how these trade-offs net out in terms of USAID’s
key accuracy metric, the BPAC. Figure 3 demonstrates that the accuracy of the
cross-validation approach outperforms that of the IRIS-generated tool in each
country. Improvements range from 2.7 percent in Malawi to 17.5 percent in
Bolivia. The performance of the stochastic ensemble approach closely follows
that of the cross-validation approach in both East Timor and Malawi; although
the cross-validation results are statistically significantly different from the sto-
chastic ensemble results, the magnitude of those differences is trivial in the case
of Malawi and quite small in the case of East Timor (table 4).

In addition to gains in average BPAC, we also see large gains in the lower
bound (2.5th percentile) performance using cross-validation and stochastic
ensemble methods. The cross-validation (stochastic ensemble) approach
improves the lower bound BPAC accuracy in Boliva by 38 (7) percent, in East
Timor by 11 (8) percent, and in Malawi by 3 (2) percent.

Although the gains in poverty accuracy and BPAC in Malawi using the cross-
validation approach are not as impressive as those in Bolivia and East Timor,
note that the tool is able to outperform the already relatively accurate IRIS tool
for Malawi in terms of these metrics while also reducing both the leakage and
undercoverage rates.

The relatively strong performance of the cross-validation approach compared
with the stochastic ensemble approach is due to the fact that the cross-validation
approach benefits from IRIS’s time and effort in selecting from a large set of pos-
sible variables a subset that explains much of the variation in the dependent vari-
able. Because we have limited our analysis to the same subset of variables as
selected by IRIS for their preferred models, the relative strengths of the stochastic
ensemble methods in terms of variable selection are not well displayed through

TABLE 4. Tukey-Kramer Tests of Equality of Bootstrap Poverty Accuracy and
BPAC Means across Estimates

Poverty accuracy Balanced poverty accuracy criteria

Estimation Difference TK test statistic Difference TK test statistic

Bolivia CV vs IRIS 5.79* 37.55 8.61* 28.20
SE vs IRIS �2.25* �14.07 0.85 2.38
CV vs SE 8.04* 54.14 7.76* 29.04

East Timor CV vs IRIS 3.69* 23.89 2.78* 11.87
SE vs IRIS 2.43* 15.43 1.29* 5.39
CV vs SE 1.26* 8.40 1.49* 7.68

Malawi CV vs IRIS 2.25* 59.06 2.19* 50.03
SE vs IRIS 2.06* 49.11 1.43* 30.85
CV vs SE 0.19 4.90 0.76* 17.51

Note: CV ¼ cross-validation estimates; IRIS ¼ IRIS reported estimates; SE ¼ stochastic ensemble
estimates.
*Indicates difference is significant at 1% significance level.
Source: Authors’ estimates using data and procedures detailed in the text.
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this analysis. Therefore, it remains an open question (that we plan to address in a
later paper) as to whether our stochastic ensemble approach would outperform
the combination of IRIS’s parametric model with cross-validation had we begun
with the full set of 70–125 variables instead of the selected subset. Our analysis
does suggest, however, that the proxy means test tool developer who prefers to
skip the time-consuming and computationally intensive process of stepwise re-
gression followed by the comparison of multiple model specifications would do
at least nearly as well in terms of out-of-sample performance as the tool devel-
oper who does take the time to perform these analyses and then combine them
with cross-validation.

Finally, the robustness results for the assessment of tool performance under
new poverty lines are reported in appendix table A2. From a comparison of rows
2, 6, and 9 for each country, we can see that the cross-validation and stochastic
ensemble approaches perform about the same as the IRIS approach under the
new poverty lines. Overall, however, across all results, including the robustness
results, we find that the cross-validation and stochastic ensemble approaches do
no worse than, and in many cases substantially outperform, the traditional
approach to PMT tool development.

V. CO N C L U S I O N

We have proposed methods for the improvement of a particular type of poverty-
targeting tool: proxy means test targeting. In the country-level case studies ana-
lyzed here, prioritization of the out-of-sample performance of these targeting
tools during tool development either through selecting a model based on its
cross-validation performance or using a method such as stochastic ensemble
methods that both selects variables and performs cross-validation along the way
can significantly improve the out-of-sample performance of these tools. In partic-
ular, we find that application of cross-validation and stochastic ensemble meth-
ods to the problem of developing a poverty-targeting tool produces a gain in
poverty accuracy, a reduction in undercoverage rates, and an overall improve-
ment in BPAC in comparison to traditional methods.

Our analysis takes as given the IRIS-selected PAT variables so as to demon-
strate the power of machine learning methods in this setting; however, beginning
with a larger set of variables over which the stochastic ensemble methods may
build a targeting model may produce even greater gains in targeting accuracy for
this approach than observed here.11 Therefore, the gains in accuracy we have
reported are likely conservative. Moreover, applying a stochastic ensemble

11. Note, however, that an algorithm cannot be given completely free range in variable selection as

the selected variables must be easily observable household characteristics that can be quickly verified with

a visit to the household for them to contribute meaningfully to a PMT test.
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approach over a larger set of variables would obviate the time-consuming tasks
of both stepwise regression for variable selection and the process of running and
comparing the performance of multiple statistical models, as was done by the
IRIS center. Overall, our findings suggest that further exploration of machine
learning methods for PMT tool development is merited.

VI. Appendix

Random forest algorithm (Hastie, Tibshirani, and Friedman 2009; Breiman 2001):

1. Grow B trees, T hbð Þ; b ¼ 1; . . . ;B, by recursively repeating steps (a)-(c):
a. Select m variables at random from the total J variables (j¼ 1,. . .J).
b. Select variable xj and split point xij ¼ s to solve the minimization prob-

lem as shown in EQ2–EQ4.
c. Split data into the resulting regions.

2. Output ensemble of trees Tbf gB
1 .

3. To make prediction at new point, x, drop observation down all trees and
calculate f̂ rf xð Þ ¼ 1

B

PB
b¼1 TbðxÞ.

Quantile regression forest algorithm (Meinshausen 2006):

1. Grow B trees, T hbð Þ; b ¼ 1; . . . ;B, as in the random forests algorithm.
However, retain the value of all observation in a given region, not just their
average.

2. For a given xij, drop observation down all trees and compute the weight,

wi xi; Hbð Þ, of observation i for every tree, b, as wi xi; Hbð Þ ¼ 1 xi2Rl j;sð Þf gPn

i¼1
1 xi2Rl j;sð Þf g

: Then compute the weight for every observation as an average over all

trees as

PB

b¼1
wiðxi;HbÞ
b .

3. Compute the estimate of the distribution function as
PN

i¼1

PB

b¼1
wiðxi;HbÞ
b 1

fyi � yg for all y.
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