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Abstract

Increasingly plentiful data and powerful predictive algo-

rithms heighten the promise of data science for humani-

tarian and development programming. We advocate for

embrace of, and investment in, machine learning methods

for poverty and malnutrition targeting, mapping, monitor-

ing, and early warning while also cautioning that distinct

objectives require distinct data and methods. In particular,

we highlight the differences between poverty and malnu-

trition targeting and mapping, the differences between

structural and stochastic deprivation, and the modeling

and data challenges of early warning system development.

Overall, we urge careful consideration of the purpose and

use cases of machine learning informed models.
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Recent extreme weather events, food price shocks, the COVID-19 pandemic, and outbreaks of
violent conflict have all vividly demonstrated that food emergencies arise quickly and effect
their greatest devastation on already vulnerable and disadvantaged communities. Significant
information gaps have long impeded effective humanitarian response to food emergencies. This
was true during the “four famines” declared by the United Nations in 2017 and remains true
amid the current pandemic response around the world today. Agencies responding to such cri-
ses or working on longer term development to reduce vulnerability to food emergencies need
tools to help manage the coupled challenges of relief and development programming.

The tools agencies need vary according to the task at hand. Accurate and up-to-date house-
hold targeting and deprivation mapping can help ensure that scarce resources get directed to
the subpopulations that most need and benefit from them, minimizing waste and accelerating
relief. Rigorous monitoring and evaluation (M&E) systems can accelerate learning how best to
deploy limited resources for maximum impact. Early warning systems can help with resource
mobilization and accelerate timely delivery of contextually appropriate interventions. The
appropriate intervention may differ, however, by type of deprivation being targeted, mapped,
monitored, or forecasted.

The rapid digitization of even low-income regions makes unprecedented volumes of data
available in near-real time, potentially enabling rapid and significant advances in development
agencies' toolkits. Call detail records (CDRs), mobile phone apps, remote sensing, and social
media abound with data. We have more available information about human movement, behav-
ior, and interactions, and on the natural and cultivated environments, than ever before. Simul-
taneous improvements in data science methods, which we broadly lump under the heading of
“machine learning,” equip analysts to process ever larger volumes of data faster and extract
from those “big data” highly predictive feature sets for a given response variable as well as
develop models with highly flexible functional forms.

Machine learning methods are improving the accuracy of household-level poverty and mal-
nutrition targeting tools (Aiken et al., 2020; Blumenstock, 2021; Knippenberg et al., 2019;
Kshirsagar et al., 2017; McBride & Nichols, 2018). Recent advances in both data and methods
have enabled production of high-quality subnational maps with tolerably accurate estimates of
current and probable poverty and malnutrition conditions (Jean et al., 2016; Yeh et al., 2020).
Likewise, poverty and malnutrition forecasting for the purpose of early warning is making
incremental gains (Browne et al., 2021; Tang et al., 2021; Yeh et al., 2020). While development
and humanitarian programming are enjoying a machine learning and big data revolution, there
exist real risks that these new data series and methods underdeliver on the promise of improv-
ing targeting, mapping, monitoring, and early warning. Careful evaluation and validation work
are as important as the efforts to advance the data and methodological frontiers of these tools.

While the appeal of machine learning applications to poverty and malnutrition targeting,
mapping, M&E, and forecasting during an era of increasingly big data derives from the
methods' ability to produce flexible, data-driven, predictive models, analysts must still carefully
consider the purpose and possible use cases of different models. Consider, for example, the
trade-offs between a household-level proxy means test (PMT) targeting tool, with household
consumption expenditures as the dependent variable, that has as its features (i.e., explanatory
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variables) a set of household asset holdings that jointly explain permanent income versus a tool
that simply includes the feature set that exhibits the greatest predictive power in the available
data. The former, asset-based, model might include such assets as materials of housing con-
struction, livestock holdings, and the education of heads of household—all features that well-
accepted theory suggests reflect long-term welfare status—while the latter model, built on the
most predictive feature set available, might include any strong correlates of current consump-
tion, such as the amount of meat consumed in the last 7 days and whether a household member
is currently employed or not. The latter model may better identify the currently poor, but may
also lead to greater errors of inclusion and exclusion if the objective is to target the structurally
poor. Moreover, opportunistic models may prove more vulnerable to degradation in predictive
accuracy over time than might models founded in empirically validated theory.

Trade-offs also exist between highly predictive models built with hundreds of features and
smaller, simpler models that predict less accurately but are transparent, easy to interpret, imple-
ment, and update. The former may prove more useful for an agency, replete with technical
expertise and adequate budget to harvest data continuously, that seeks a poverty map, but may
be less useful for poverty targeting, program evaluation, monitoring, and the like, for a smaller
operational agency if the more onerous data collection task that supports the model is infeasible
to undertake on either an urgent or regular basis. Overall, effectively fitting tools to tasks
requires attention to an operational agency's objective function (Zhou et al., 2021).

As Carter and Barrett (2006) note, most of the work we do in identifying the poor is “almost
unavoidably backward looking” due to the nature of data; this observation also applies to the
task of identifying the malnourished and food insecure.1 However, the question most opera-
tional agencies seek to answer is: who will be poor or malnourished in the future? Of course,
no method can reveal the future with certainty; the combination of machine learning and big
data does not provide us with a crystal ball. We can, however, leverage big data and machine
learning methods to make effective, efficient targeting tools by paying careful attention to the
trade-offs to various approaches to modeling and data inputs. Valuable progress has been made
on all these fronts. We review and discuss this progress while also highlighting the differences
between targeting and mapping, the differences between identification of the stochastically
poor and the structurally poor, and discussing the modeling challenges of developing early
warning systems as well as data collection efforts to support all these efforts going forward.

TARGETING VERSUS MAPPING

Emergencies disproportionately impact places that suffer high levels of chronic poverty. There-
fore, understanding spatial patterns of deprivation is one of the primary analytical tasks con-
fronting an operational agency. Both targeting and mapping tools assist with these endeavors as
well as related tasks such as M&E. The basic difference between targeting and mapping is that
targeting identifies households or individuals while mapping identifies geographic areas. How-
ever, the two can and often are productively combined. For example, one might use geographic
targeting based on poverty maps as a coarse-level tool to identify poor regions or regions with
high welfare heterogeneity and then develop PMTs to target individuals/households within the
targeted geographic areas (see Blumenstock, 2021 for a great application of such two stage
targeting). Below, we make some distinctions between targeting and mapping, note recent
advancements, and identify research frontiers in both areas.
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At its most basic level, a targeting tool such as a PMT assigns weights to a set of easily iden-
tified household characteristics so as to approximate either households' welfare or households'
probability of falling below a welfare threshold (Coady et al., 2004; Grosh & Baker, 1995;
Schreiner, 2007). In most cases, stock variables, such as household asset holdings, are on the
right-hand side of a targeting model, and flow variables, such as consumption, food security sta-
tus, or a binary indicator variable capturing consumption or food security status below a thresh-
old, are on the left-hand side. Many development and social protection programs identify
eligible participants based on PMTs. They also use such tools for monitoring, evaluation, and
impact evaluation purposes, where appropriate.

Recent innovations in poverty and malnutrition targeting have built upon the “scorecard”
approach to tool development—a scorecard includes a short list of observable household char-
acteristics with corresponding estimated weights (Schreiner, 2007)—using machine learning
algorithms and techniques for dimension reduction and out-of-sample validation. Building on
the basic function of a PMT, McBride and Nichols (2018) demonstrate the targeting gains of
out-of-sample testing for model selection, whether using standard approaches, such as logit and
quantile regression, or machine learning approaches, such as random forests. Recognizing that
agencies need simple scorecards and often have to build them using limited (as opposed to
“big”) data, Kshirsagar et al. (2017) demonstrate that highly predictive models using no more
than 10 variables can be built on limited data using cross-validation and parameter regulariza-
tion for feature selection.

Kshirsagar et al. (2017) also highlight the important role of bootstrap aggregation—
parameterizing a model by averaging over many subsamples from the data—within model
development to achieve a model that performs consistently well across subpopulations within a
country. Baez et al. (2019) emphasize the value and importance of using child malnutrition
indicators, as opposed to consumption or expenditure measures, as the outcome variable in a
targeting model when one is interested in child well-being among agricultural households. In
producing a drought-contingent targeting model using Demographic and Health Survey (DHS)
data combined with Normalized Difference Vegetation Index (NDVI), Baez et al. (2019) find
that simple and easily interpreted methods such as logistic regression and classification trees do
just as well as black box methods such as random forest and gradient boosting in the prediction
of child-level stunting, suggesting that the trade-offs between interpretability and strong predic-
tion may be modest. Baez et al. (2019) also make clear the value of augmenting relatively sparse
data, such as DHS household-level surveys, with big data such as NDVI satellite data for
targeting purposes.

One challenge of targeting tools is that model parameters may shift over time and space,
meaning the model needs to be reparameterized to remain accurate when applied to a new
(including future) population. This is a challenge because nationally representative household
surveys are few and far between. Another challenge is that targeting tools require further data
collection for application to a given subpopulation for the purpose of targeting: to be used for
targeting or monitoring purposes, the model weights must be applied to current household
assets and characteristics. Therefore, important innovations in targeting tool development
include those that look to new data sources for parameterization and/or application of the
model.

Such innovations include Altında�g et al. (2021), Blumenstock (2021), and Aiken
et al. (2020). Altında�g et al. (2021) demonstrate that a PMT tool developed to assist the Lebanese
government in disbursing aid to Syrian refugees could be applied to administrative data already
held by the government. This innovation accelerates disbursement and reduces costs by
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obviating the need for a costly household survey. Blumenstock (2021) uses a representative
mobile phone-based survey, in areas identified through a poverty mapping exercise, to build
and deploy a PMT targeting tool based on mobile phone use during the COVID-19 pandemic.
With the noted limitation that those who do not own a mobile phone SIM card will not have
access to the targeted transfers (and the research team does a great deal to limit the population
that will fall into this category), this approach resolves many of the challenges of conventional
targeting tool development and deployment and will become more effective only as mobile
phone ownership becomes more ubiquitous. Likewise, Aiken et al. (2020) find that CDRs per-
form as well as a survey-based PMT in identifying the ultra poor in the Balkh province of
Afghanistan for the subset of households that own phones. They also find, however, that CDRs
are not strong predictors of household wealth in general in this setting, likely due to sample
homogeneity. Use of satellite imagery to capture household-level asset holdings, such as hous-
ing roof top material, may be another way forward in streamlining household-level targeting.

Poverty mapping is a related but distinct task from household- or individual-level
targeting. In contrast to targeting tools, mapping focuses not on households but on geographic
aggregates showing the spatial distribution of welfare (Coudouel & Bedi, 2007; Elbers
et al., 2003; Ghosh & Rao, 1994). Historically, mapping has been conducted at a relatively
coarse scale, such as first or second administrative levels within or across countries. With
increased spatial precision from various Earth observation products, it is now feasible to pro-
duce welfare estimates at far more precise—village, or sub-village, prospectively even plot—
scales, which means the lines between geographic mapping and household-level targeting are
blurring. Further blurring the lines is the fact that the geographic aggregation of household-
level data may be used to communicate welfare distributions even though the disaggregate,
household-level data are readily available. The distinction between mapping and targeting then
may come down to whether it is the objective of the analysis to identify variation in welfare
across geographic space, or across households as identified by their observable characteristics
(possibly including their geographic location).

Recent advances in poverty mapping and small-area estimation include the use of mobile
phone records, nightlights data, daytime satellite imagery, and other remote sensing data com-
bined with various machine learning models (or models more recently grouped into machine
learning, such as elastic nets) for increasingly accurate projections of the spatial distribution of
poverty, food (in)security, welfare, or measures of human development (Blumenstock
et al., 2015; Browne et al., 2021; Engstrom et al., 2017; Head et al., 2017; Hersh et al., 2020; Jean
et al., 2016; Masaki et al., 2020; Noor et al., 2008; Pokhriyal & Jacques, 2017; Steele et al., 2017;
Yeh et al., 2020).

In particular, Blumenstock et al. (2015) introduce CDRs as a predictor of the distribution of
asset wealth in regions of the world for which household-level data are otherwise sparse. Jean
et al. (2016) demonstrate that convolutional neural nets (CNN) trained to predict nighttime
light intensity from daytime satellite imagery can capture 55%–75% of the variation in asset
wealth (as reflected in the widely used and internationally standardized DHS wealth index)
within a given country and 41%–56% of the variation in consumption expenditures. While Jean
et al. (2016) find success in predicting asset wealth, they find less success predicting consump-
tion expenditures. This finding is echoed by findings in Barriga Cabanillas et al. (2021) and
Tang et al. (2021); overall, stock measures appear easier to predict than flow measures.

While the trend in mapping is to combine disparate data sources, it should be noted that, as
the data input demands grow, so does the burden and expense of updating the model/map. A
number of papers directly address these and other data challenges. Hersh et al. (2020)
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demonstrate that reasonably accurate poverty maps can be developed using only open source
data, reducing the cost burden of map development and maintenance for national statistics
offices. Yeh et al. (2020) demonstrate that CNNs trained on only nightlights or only multispec-
tral daytime imagery do about as well as those trained on both nightlights and daytime imagery
in the prediction of asset poverty across space, as the inputs capture the same variation. Such
observations help reduce the input demands for high-resolution spatial mapping.

Yeh et al. (2020) also find that nightlights data performed poorly relative to daytime imagery
in predicting asset wealth over time, in large part because the nightlights data did not vary suffi-
ciently over time in the sample regions. This finding highlights another key challenge of map-
ping with big data: often the data that are most abundant have limited variation among the
poorest of the poor (Blumenstock, 2016, 2020). For example, Barriga Cabanillas et al. (2021)
demonstrate the limitation of CDRs in the prediction of food security outcomes in Haiti; they
find that these records do not capture variation at the lower end of the welfare distribution.
Given the limitations of nightlights and CDRs, some recent mapping models focus on use of
NDVI, solar-induced chlorophyll fluorescence (SIF), and other remotely sensed data that may
better correlate with the welfare of households reliant on local agricultural systems for their
livelihoods or for food supplies (Browne et al., 2021; Tang et al., 2021).

In addition to poverty mapping, recent advancements have been made in the mapping of
other measures of deprivation. For example, Njuguna and McSharry (2017) combine data on
mobile phone ownership and the number of calls per phone with nightlights and population
density data to map the multidimensional poverty index for Rwanda. Pokhriyal and
Jacques (2017) also map the multidimensional poverty index within Senegal at the commune
level by using a combination of data sources including mobile phone records, climate and vege-
tation data, data on soils and crop production, and other remotely sensed and geospatial data.

Big data and machine learning-informed mapping methods have not performed as well in
predicting indicators of malnutrition as they have in predicting asset wealth and poverty. For
example, Head et al. (2017) replicate the success of Jean et al. (2016) in predicting asset wealth,
explaining approximately 70% of the variation in the DHS wealth index across space using satel-
lite imagery. They also find moderate success predicting electricity, education, and mobile
phone ownership, with r2 values from 24% to 64%. However, they find very poor performance
in predicting child anthropometric outcomes.

A significant challenge in predicting malnutrition outcomes is that they tend to be measured
with noise, and some workhorse measures, such as severe wasting, are, thankfully, less preva-
lent than poverty (Baez et al., 2019; Head et al., 2017). To address this challenge, Zhou
et al. (2021) use oversampling combined with random forest and gradient boosting models; they
demonstrate that oversampling rare and noisy food insecurity outcomes in model development
can significantly improve predictive accuracy in the targeting and forecasting of food insecurity
at the cluster level. Noting that malnutrition outcomes are strongly correlated with wealth,
which Jean et al. (2016), Head et al. (2017), and many others predict with accuracy, Browne
et al. (2021) propose joint prediction of malnutrition and wealth measures, who find modest
improvement in predicting malnutrition indicators over time using multivariate random forests.
The objective is to parse signal from noise by harnessing multivariate analysis; this line of
research merits further exploration.

Mapping and targeting differ fundamentally in terms of objectives and (geographic) scale of
output, though they can be, and often are, fruitfully used together. Machine learning and big
data have enabled exciting advancements in the efficiency and accuracy of both targeting and
mapping. However, we join Head et al. (2017) in urging caution when generalizing the results
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of successful approaches such as Jean et al. (2016) to other contexts and outcomes. Sufficient
variation in the input variables and sufficient correlation with the outcomes of interest are min-
imum requirements for a targeting or mapping model to accurately identify the poor or mal-
nourished. In comparison to mapping, targeting has not enjoyed as much innovation in recent
years. This may be due to the fact that geography is a strong determinant of poverty and malnu-
trition, and therefore household-level targeting is not as great a priority as is geographic
targeting for operational agencies. It is also in part due to the fact that big data are not yet abun-
dant at the household level. Targeting advances by Blumenstock and co-authors based on CDRs
prove the exception to this; however, as noted above, in many places these data still offer lim-
ited information about the population of interest, the poorest of the poor (Barriga Cabanillas
et al., 2021; Blumenstock, 2020).

STRUCTURAL VERSUS STOCHASTIC POVERTY AND FOOD
INSECURITY

The poor include those who are always poor as well as those who move in and out of poverty,
with some evidence that the latter group makes up a substantial proportion of the poor at any
given point in time. For example, Baulch and Hoddinott (2000) find that 20%–65% of house-
holds across 13 panel studies are classified as “sometimes poor,” a category more numerous
than the “always poor” classification. They also find considerable heterogeneity in the duration
of poverty within the transitory poor.2 Likewise, Knippenberg et al. (2020) find that most food-
insecure households in Malawi transition in and out of food insecurity, with significant
heterogeneity in food insecurity spell length. Distinguishing between structural and stochastic
deprivation3 is important for well-targeted interventions and requires the targeting, mapping,
monitoring, or early warning model to account for the structural determinants of deprivation
(Carter & Barrett, 2006).

How can one account for the structural determinants of deprivation in such a model?
Because permanent (i.e., expected) income and thus consumption expenditures are endogenous
to the stock of productive assets one controls, identifying the structural determinants of poverty
entails considering the dynamics of asset accumulation, where “asset is understood to broadly
include conventional, privately held productive and financial wealth, as well as social, geo-
graphic and market access positions that confer economic advantage” (Carter & Barrett, 2006).
Much empirical work supports this asset-based theory of welfare dynamics (Balboni et al., 2020;
Barrett et al., 2006; Barrett et al., 2019; Carter & Lybbert, 2012).

An asset-based understanding of welfare dynamics can assist one in identifying the struc-
tural poor in a targeting or mapping setting. One useful, data-driven, distinction is offered by
Carter and May (1999): households that are currently poor (according to their current level of
consumption or expenditures) but for whom a conditional expectation function of consump-
tion/expenditures given current asset holdings predicts a non-poor standard of living are con-
sidered stochastically poor; those that are currently poor and for whom a conditional
expectation function of consumption/expenditures given current asset holdings predicts a poor
standard of living are considered structurally poor. This distinction reinforces the value of
including asset holdings as features when developing targeting models where the primary group
of interest is the structural poor. Asset holdings have the additional advantage that they are
often verifiable, whereas other predictors of welfare, such as how much meat was consumed in
the past week, may be more challenging to verify. However, there is tension between the

MCBRIDE ET AL. 7



asset-based theory of welfare dynamics, wherein asset holdings are important in determining
long-term deprivation, and standard big data/machine learning approaches to model develop-
ment, which are often based on the most predictive feature set for a given response variable.
Big data rarely include household-level asset holdings, and models with the highest out of sam-
ple r2 may not do a great job in identifying the structurally poor and food insecure, as these are
generally a subset of the overall currently poor.

Where the distinction between stochastic and structural poverty or food insecurity is needed
for well-targeted interventions, more household-level survey data may be needed. Where such
data are not available, mapping for the purpose of geographic targeting may best capture the
persistent spatial distribution of poverty and malnutrition. Geography typically reflects the con-
fluence of multiple market and state failures and may directly influence structural poverty and
malnutrition. Moreover, geographic targeting is relatively quick and cost effective, especially as
compared to household- or individual-level targeting. Indeed, there is growing evidence that
much persistent poverty is place-based and that escape from such poverty often involves migra-
tion (Beegle et al., 2011; Jalan & Ravallion, 2002; Pritchett & Hani, 2020; Ravallion and Wodon,
1999; de Weerdt, 2010). Yeh et al. (2020) suggest, and take a few steps in the direction of, using
poverty mapping as an avenue to learn more about the determinants of geographically distrib-
uted structural poverty; this is an important direction for further research.

STATIC VERSUS DYNAMIC MODELS

Can advances in machine learning methods and data availability improve early warning sys-
tems, such as would allow us to predict the mass movement into (or deepening of) poverty or
malnutrition in an upcoming period? For the identification of individuals, households, and/or
regions that will experience poverty in the next period, and the anticipation of the consequences
of shocks on vulnerable populations, dynamic rather than static models may be necessary. By
dynamic models we mean models that take as inputs and produce as outputs changes over time.
With few exceptions, poverty mapping and poverty targeting efforts tend to produce static
models, defined as fixed-point or interval values (for stocks and flows, respectively) rather than
as intertemporal change in those values. This is in large part due to data limitations. Although
similar in nature, the tasks—early warning versus identifying the presently poor or
malnourished—require different tools and inputs. Most critically, dynamic models require
panel data, that is, repeated observations over time of the units of observation.

Several works have made progress in these directions. Mude et al. (2009) generate a famine
early warning and emergency needs assessment model using lagged high-frequency data from
northern Kenya. Lentz et al. (2019) demonstrate that simple linear regression with high-
frequency data inputs outperforms the prevailing food insecurity early warning model, the Inte-
grated Food Security Phase Classification (IPC) System, in Malawi. Using such inputs as
remotely sensed climate data, data on food prices, and demographic data, Lentz et al. (2019)
make near-real-time food security predictions that would allow agencies to monitor food secu-
rity dynamics over time and at a local (survey cluster) level. Cooper et al. (2019) produce a map
that predicts where drought is likely to have the most severe impacts on child stunting by
accounting for factors such as arid environments, poor governance, and political instability.
And as mentioned above, Zhou et al. (2021) use oversampling to improve the forecasting of food
insecurity at the cluster level, while Browne et al. (2021) jointly predict next period asset and
malnutrition outcomes at the cluster level using multivariate random forests. Andree
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et al. (2020) predict food crises in 21 countries between 2009 and 2020. With particular attention
to the trade-offs between false positive and false negative rates in prediction outcomes, Andree
et al. (2020) demonstrate that model developers can adjust the loss function of their random for-
est model to give more or less conservative (in terms of the extent to which they avoid false pos-
itives) predictions. Like that of Zhou et al. (2021), this approach pays careful attention to
agency needs and common decision-making parameters. Using this strategy, Andree
et al. (2020) are able to predict future food crises with lower false negative rates than can the
currently used IPC System.

In addition to the above strategies, each of which predicts levels of food security or malnu-
trition for early warning and monitoring purposes, several early warning efforts have focused
on predicting changes in outcomes based on changes in inputs over time. Tang et al. (2021)
demonstrate that a CNN trained on changes in NDVI over time can predict future changes in
poverty in Uganda. Yeh et al. (2020) also show that mapping models can predict changes over
time with modest accuracy. The Yeh et al. (2020) deep-learning model, using multispectral day-
time imagery, captures 17% of the out-of-sample variation in cluster level in changes in welfare.
Using simulations, Yeh et al. (2020) demonstrate that an r2 of 17% is about as well as a model
could do predicting out-of-sample changes in the wealth index, given the variation in the index
over time.

An additional promising area of research for early warning purposes relates to development
resilience (Barrett & Constas, 2014). Recent theoretical (Barrett & Constas, 2014) and empirical
developments (Cissé & Barrett, 2018; Knippenberg et al., 2019) in the study of development
resilience suggest that, with high-frequency longitudinal data, targeting expected resilience may
be possible. Conceptualizing resilience as a measure of future well-being allows one to estimate
the probability of staying above a welfare threshold as a function of assets and exposure to
shocks (Cissé & Barrett, 2018; Knippenberg et al., 2019). Along these lines, Baez et al. (2019)
propose a drought-contingent early warning system to identify regions where children are at
risk of stunting due to drought. Knippenberg et al. (2019) estimate a food security early warning
system, with the food security coping strategies index as the response variable, using LASSO
and random forests for feature selection.

An exciting data development for potentially enhancing early warning models is the increas-
ing availability and accessibility of satellite measurements of SIF (Frankenberg et al., 2011;
Mohammed et al., 2019; Sun et al., 2017; Wen et al., 2020). Because SIF is the only remotely
detectable optical signal that occurs during photosynthetic machinery, it possess exciting poten-
tial to reveal physiological stress earlier than can the more commonly used NDVI measure of
vegetation growth/health (Daumard et al., 2010; Song et al., 2018). In addition, whereas the
conventional use of NDVI to capture vegetation growth usually involves recalibration for differ-
ent cropping systems, SIF, mechanistically linked to photosynthesis itself, has the potential to
be more scalable for yield estimation across crop types (Guanter et al., 2014; Sun et al., 2017).
However, at present, SIF data do not have as high a resolution as NDVI (Wen et al., 2020). This
remains a central limitation to their use for early warning.

In fact, many of these early warning models depend on, or would perform better with,
access to higher frequency and higher resolution data from surveys or satellites. While high-
frequency survey monitoring data can increasingly be supplemented by remote sensing data—
for example, NDVI, SIF, weather, food prices, daytime or nightlights imagery—to significantly
improve poverty and malnutrition M&E, mapping, and targeting, data preprocessing and main-
tenance is time consuming and expensive. Multilateral collaboration to produce and maintain
cloud-based platforms with curated open access data would facilitate low-cost data reuse and
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augmentation, along with model development and improvement. Such a platform would allow
researchers to pick up where others have left off. Google Earth Engine makes some raster data
available, but the data list is still not comprehensive. Efforts such as the data gateway of the
Food Security Portal, hosted by IFPRI (https://api.foodsecurityportal.org/), are a useful step in
this direction. And recent developments such as the Rolf et al. (2020) Multi-task Observation
using Satellite Imagery and Kitchen Sinks, a procedure for the extraction and labeling of “task-
agnostic” features from satellite imagery, promise to significantly increase the accessibility of
remotely sensed data.

For those data that cannot be observed via remote sensing, high-frequency data collection
using sentinel sites, which allow long-term monitoring and measurement of welfare and well-
being, would go a long way toward supporting development resilience and early warning
(Barrett, 2010; Headey & Barrett, 2015). Taking advantage of widespread access to mobile
phones, such sentinel sites could be set up affordably for the purpose of collecting a small set of
key features not observed through remote sensing, while costlier “thick” surveys, which include
welfare outcomes of interest for ground truthing of early warning models, could be conducted
less frequently (Headey & Barrett, 2015).

As mentioned in the previous sections, combining different types of data (temporal, spatial)
and tools (mapping, monitoring, targeting) may also allow us to overcome some current data
limitations. For example, where household-level outcomes are of interest but only course spatial
data are available, mapping may allow the researcher to identify regions in which more inten-
sive on-the-ground data gathering is needed, such as vulnerable regions, regions with high het-
erogeneity, or regions where our models perform poorly. We might also interact data that varies
temporally with data that varies spatially to better predict changes over time. Machine learning
methods such as transfer learning may also allow the modeler to overcome some data limita-
tions such as sample size constraints, and neural nets may allow the modeler to resolve the
problem of combining data at multiple temporal and spatial scales.

Early warning models also suffer from endogeneity of intervention. If prior indicators of
food crises caused intervention/response, then the outcomes needed to train such an early
warning model may not be available in the data (V. Kshirsagar, personal communication,
2021). Analysts need data not only on food insecurity and its structural correlates but also on
intervention and mitigation efforts in order to design and maintain effective early warning sys-
tems. Such data would also require coordination among operational agencies and could be
vastly facilitated by interagency/intergovernmental platforms.

However, even as we clamor for more data, we also urge caution in data collection, handling,
and use. Informed consent and anonymity must be scrupulously maintained. While randomized
offsets in geotagged household-level survey data can frustrate targeting, mapping, and M&E efforts,
they also serve to protect the populations under study. Similar strategies must be used to protect the
geolocations of individuals who share data via CDRs and mobile phone-based surveys. As data con-
tinue to grow, especially geotagged data and data from mobile phones and apps, researchers will
need to continue to protect the privacy of vulnerable communities in tandem with improving the
rapid deployment of services and transfers that can meet their needs.

Finally, one can only predict with accuracy states and processes that have been previously
observed in data. This presents a challenge to the development of early warning systems in an era
of climate change. Nonstationarity processes can result in a shift into a previously unobserved state.
For example, with sea level rise, past data-generating processes will likely perform poorly in
predicting future outcomes for coastal communities increasingly faced with regular or permanent
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flooding. We will struggle to anticipate outcomes in such regions with accuracy no matter how
abundant our data and powerful our algorithms. Such data limitations suggest that simulation may
be an additional important tool for developers of early warning systems in the future.

CONCLUSION

Any machine learning-based model, map, or tool will only be as good as the data used to train
and test it. Consequently, data availability has enormous implications for the questions that can
be asked and answered with machine learning applications. Progress is limited by a serious
undersupply of the global public good of data collection, standardization, updating, and open
access curation of key variables that are typically useful in poverty and malnutrition targeting,
mapping, M&E, and forecasting.

The COVID pandemic, the rising challenges of climate change, and related food crises com-
bined with advanced data collection techniques and powerful algorithms all increase the value
of rapid assessment while simultaneously increasing the complexity of and care we must take
in data use and model building. While we embrace the power and possibility of big data and
machine learning, we simultaneously urge thoughtful consideration of the purposes and uses of
these models. Most importantly, no data or targeting, mapping, or early warning model will be
effective without the political will and financial support to take action and intervene to reduce
unnecessary human suffering.

ACKNOWLEDGMENTS
We thank Nathan Jensen, Varun Kshirsagar, and participants and presenters at the AAEA
ASSA 2021 Big Data and Near-Real-Time Monitoring of Food Emergencies session for feedback
and insights on earlier drafts of this work. Any remaining errors are our own. We thank the
United States Agency for International Development for financial support under cooperative
agreement # 7200AA18CA00014, “Innovations in Feed the Future Monitoring and
Evaluation—Harnessing Big Data and Machine Learning to Feed the Future.” The contents are
solely the authors' responsibility and do not necessarily reflect the views of USAID or the
United States Government.

ENDNOTES
1 We are abstracting from important definitional challenges throughout this paper: determining a poverty line,
local and global nutrition standards, and food security threshold (even measuring food security) are all non-
trivial tasks. See Barrett (2010) for an introduction to the challenges of measuring food security, UNHCR (2005)
for an introduction to the challenges of defining nutrition standards, and Ravallion (2020) for an introduction
to the challenges of measuring poverty.

2 An important caveat to these observations is that transience in welfare status is typically overestimated in avail-
able data due to measurement error and short panel intervals (Naschold & Barrett, 2011). In addition, while
the transitory poor and food insecure make up a majority of the poor and food insecure on headcount mea-
sures, they are not necessarily the majority in more distributionally sensitive metrics, as the depth of poverty
and food insecurity is typically greatest among the most chronically deprived.

3 One might consider seasonal food insecurity along these same lines: some seasonal food insecurity is structural,
some stochastic (V. Kshirsagar, personal communication, 2021). Where parsing structural seasonal food insecu-
rity from stochastic seasonal food security is important for a well-targeted intervention, the concerns we iden-
tify here apply.
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